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ABSTRACT

 

Aim

 

This research aims to understand the factors that shape elevational diversity
gradients and how those factors vary with spatial grain. Specifically, we test the pre-
dictions of the species–productivity hypothesis, species–temperature hypothesis, the
metabolic theory of ecology and the mid-domain effects null model. We also examine
how the effects of productivity and temperature on richness depend on spatial grain.

 

Location

 

Deciduous forests along an elevational gradient in Great Smoky Mountains
National Park, USA.

 

Methods

 

We sampled 22 leaf litter ant assemblages at three spatial grains, from 1-m

 

2

 

quadrats to 50 

 

×

 

 50 m plots using Winkler samplers.

 

Results

 

Across spatial grains, warmer sites had more species than did cooler sites,
and primary productivity did not predict ant species richness. We found some
support for the predictions of the metabolic theory of ecology, but no support for
the mid-domain effects null model. Thus, our data are best explained by some version
of a species–temperature hypothesis.

 

Main conclusions

 

Our results suggest that temperature indirectly affects ant
species diversity across spatial grains, perhaps by limiting access to resources. Warmer
sites support more species because they support more individuals, thereby reducing
the probability of local extinction. Many of our results from this elevational gradient
agree with studies at more global scales, suggesting that some mechanisms shaping
ant diversity gradients are common across scales.
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INTRODUCTION

 

What causes geographical variation in the number of species

in local assemblages? This question has intrigued ecologists

and biogeographers for more than 100 years, and dozens of

mechanisms have been suggested to explain geographical

variation in species richness (Gaston, 2000; Hawkins 

 

et al.

 

, 2003;

Currie 

 

et al.

 

, 2004; Evans 

 

et al.

 

, 2005; Rahbek, 2005). Many of

these mechanisms fall into three broad classes of hypotheses:

species–productivity hypotheses, species–temperature hypotheses

and geometric constraints hypotheses.

 

Species–productivity hypotheses

 

Species–productivity hypotheses rest on a chain of causal links.

The first link is that as productivity increases, so does the total

abundance of a taxon in an area. Second, as abundance increases,

so does richness. There are two mechanisms by which abundance

can affect richness. The ‘abundance–extinction’ mechanism

posits that more productivity leads to larger average population

sizes, thereby reducing the probability of local extinction

(Wright, 1983; Srivastava & Lawton, 1998; Kaspari 

 

et al.

 

, 2000b). In

contrast, the ‘sampling mechanism’ posits that more productivity

increases the number of individuals in an assemblage. As more

individuals are supported, the probability of a novel species

being ‘sampled’ by a local assemblage from the regional species

pool increases (Gotelli & Graves, 1996; Evans 

 

et al.

 

, 2005).

Distinguishing between the abundance–extinction and sampling

mechanisms can be difficult, but one way to distinguish between

them is to remove the effect of sampling by calculating Fisher’s

 

α

 

. Fisher’s 

 

α

 

 is a widely used estimate of diversity because it is

independent of sample size and removes the sampling effect
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(Fisher 

 

et al.

 

, 1943; Hubbell, 2001; Kaspari 

 

et al.

 

, 2003; Evans

 

et al.

 

, 2005).

 

Species–temperature hypotheses

 

All species–temperature hypotheses predict that diversity is a

positive function of temperature, but the mechanisms underlying

that relationship differ. Temperature could indirectly limit

diversity because it covaries with net primary productivity

(NPP)

 

 

 

(Rosenzweig, 1968; Leith, 1975), limits the physiology,

behaviour or ranges of individuals (Kerr & Packer 1997; Kaspari

 

et al.

 

, 2000b), or drives speciation rates (Rohde, 1992; Allen 

 

et al.

 

,

2002; Brown 

 

et al.

 

, 2004).

One species–temperature hypothesis that is receiving

increasing attention is the metabolic theory of ecology (MTE;

Allen 

 

et al.

 

, 2002; Brown 

 

et al.

 

, 2004; Algar 

 

et al.

 

, 2006; Hawkins

 

et al.

 

, 2006). Based on the biochemical kinetics of metabolism,

the MTE makes two predictions. First, ln-transformed species

richness should be linearly associated with an inverse rescaling

of annual temperature (Allen 

 

et al.

 

, 2002; Brown 

 

et al.

 

, 2004).

Second, and more specifically, the slope of the relationship

between ln-transformed richness and 1/

 

kT

 

, where 

 

k

 

 is Boltzmann’s

constant (0.0000862 eV K

 

−

 

1

 

) and 

 

T

 

 is temperature in Kelvin,

should fall between 

 

−

 

0.60 and 

 

−

 

0.70 (Brown 

 

et al.

 

, 2004). While

many studies have tested for a relationship between temperature

and diversity, only a handful of studies have tested whether

observed richness patterns agree with the predictions of the MTE

(Allen 

 

et al.

 

, 2002; Brown 

 

et al.

 

, 2004; Kaspari 

 

et al.

 

, 2004; Algar

 

et al.

 

, 2006; Hawkins 

 

et al.

 

, 2006).

 

Mid-domain null models

 

Geometric constraints along biogeographical domains can also

influence patterns of species richness (Colwell 

 

et al.

 

, 2004). These

effects are often called mid-domain effect (MDE) null models.

MDE null models predict a hump-shaped diversity curve that,

due to spatial constraints, arises because the ranges of more

species are expected to overlap by chance near the centre of the

domain than at the edges of the domain. The concepts associated

with MDE are controversial (Colwell 

 

et al.

 

, 2004; Hawkins 

 

et al.

 

,

2005), and some empirical studies show strong support for MDE

while others do not (Dunn 

 

et al.

 

, 2006).

 

Spatial scale and grain

 

Key to understanding the causes of spatial gradients in species

richness is disentangling the relative importance of the underly-

ing mechanisms and how they depend on spatial grain (Rahbek,

2005). One practical difficulty of disentangling the relative

importance of temperature and productivity is that the two often

covary in space. In addition, the effects of temperature and

productivity may be masked by the influence of taxonomic

composition, habitat structure and historical processes (Ricklefs

& Schluter, 1993). Analyses at scales smaller than continental

domains potentially include sites where temperature and pro-

ductivity do not covary, thus minimizing the influence of habitat

differences (if habitat type is controlled for) and regional historical

processes. Therefore, examining the causes of spatial variation

in richness at small spatial scales may better illuminate the

mechanisms underlying gradients in species richness.

Spatial grain (the size of the sampling unit) can affect the form

of and mechanisms underlying many spatial diversity gradients

(Rahbek & Graves, 2001; Chase & Leibold, 2002; Hurlbert &

Haskell, 2003; Kaspari 

 

et al.

 

, 2003; Rahbek, 2005). At small

grains, a multitude of biotic and abiotic factors might limit

richness (Rahbek & Graves, 2001; Hurlbert & Haskell, 2003) and

the relationship between richness and energy is often unimodal,

with richness first increasing at low levels of productivity and

then decreasing at high levels of productivity (Chase & Leibold,

2002; Mittelbach 

 

et al.

 

, 2001). History and environmental factors

will play larger roles as scale increases. Furthermore, at large

spatial grains, species richness often increases monotonically

with productivity (Mittelbach 

 

et al.

 

, 2001; Chase & Leibold, 2002;

Hawkins 

 

et al.

 

, 2003). More recent analyses (Whittaker & Heegaard,

2003; Gillman & Wright, 2006), however, have shown that the

unimodal relationship between species richness and productivity

may not be as common as previous authors have suggested, and

the relationship may not depend on spatial grain.

We sampled ant assemblages at 22 sites and three spatial grains

along an elevational gradient in the southern Appalachian

Mountains, USA. We use these data to: (1) test the predictions of

the species–productivity hypothesis, the species–temperature

hypothesis, the MTE and the mid-domain effects null model;

and (2) examine how the effects of productivity and temperature

on richness depend on spatial grain.

 

METHODS

Study sites and sampling

 

We sampled ant assemblages at 22 sites along an elevational

gradient (379–1742 m) in Great Smoky Mountains National

Park, USA (total area 2111 km

 

2

 

) in June–August 2004 and 2005,

during periods of peak ant activity (Dunn 

 

et al.

 

, 2007b). The sites

were all in mixed hardwood forests and located in areas

away from roads, heavily visited trails or other recent human

disturbances.

At each site, we randomly placed a 50 

 

×

 

 50 m plot. Within the

corners of this plot, we placed a 10 m 

 

×

 

 10 m subplot, and within

the corners of each 10 m 

 

×

 

 10 m subplot, we sampled ants in four

1-m

 

2

 

 quadrats. Thus at each site there were 16 1-m

 

2

 

 quadrats. At

each 1-m

 

2

 

 quadrat, we collected the leaf litter inside the quadrat

and sifted it through a coarse mesh screen of 1-cm grid size to

remove the largest fragments and concentrate the fine litter. The

litter fragments that did not fit through the mesh, twigs and

sticks in each 1-m

 

2

 

 quadrat were inspected for colonies. The con-

centrated fine litter from each of the 16 1-m

 

2

 

 quadrats was then

suspended in 16 mini-Winkler sacks for 2 days in the laboratory.

Winkler samplers are increasingly being used as common and

efficient tools for sampling and quantifying ant diversity (Fisher,

1996, 1998, 2005; Ward, 2000; Longino 

 

et al.

 

, 2002; Kaspari 

 

et al.

 

,

2004). All worker ants that were extracted from the 1-m

 

2

 

 quadrats
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were identified and enumerated and are stored in N.J.S.’s ant

collection at the University of Tennessee. A species list is available

from N.J.S. At eight of the sites, we also collected ants using an

array of 10 pitfall traps over 2 years. The number of species

collected by pitfall traps did not differ from the number collected

by the Winkler samplers (paired 

 

t

 

 = 1.88, 

 

n

 

 = 8, 

 

P

 

 = 0.11). Similarly,

the fauna sampled by the pitfall traps was similar to the fauna

sampled by the Winkler samplers (mean Jaccard similarity index

= 0.70) (Lessard 

 

et al.

 

, 2007).

We estimated richness at three spatial grains: the average

number of species in a 1-m

 

2

 

 quadrat; the number of species in 50

 

×

 

 50 m plots (the number of species detected in the 16 1-m

 

2

 

quadrats at the site); and the Chao2 estimate of richness for the

site assuming sampling went to completion. Counts of observed

species may reflect total species richness, but they are also sensitive

to total abundance and the number of individuals collected in

the sample (Gotelli & Colwell, 2001). For these reasons, species

richness estimators such as Chao2 are recommended (Gotelli &

Colwell, 2001). The Chao2 estimate is spatially ambiguous, but

represents the number of species occurring in some area larger

than the 50 

 

×

 

 50 m plot (Colwell & Coddington, 1994). Because

estimators such as the Chao2 are sensitive to sample size (Colwell

& Coddington, 1994), we used 

 



 

 7.50 (Colwell, 2005a)

to construct 500 randomized accumulation curves for each site to

calculate the standard deviation of the estimated species richness.

 

Estimating temperature and productivity

 

To estimate mean annual temperature at each of our 22 sites, we

used data from one or two HOBO data loggers placed on the

ground at 11 sites over 2 years from 2002 to 2003. These 11 sites

ranged in elevation from 531 to 1944 m. Initially there were two

data loggers at each site, but one data logger at each of three sites

was damaged, presumably by bears. Temperature measurements

differed little between the two data loggers at any one site, so it is

unlikely that data lost from the three data loggers influenced our

estimates of temperature. Temperature data were recorded

hourly. Mean January minimum temperature, mean July

maximum temperature and annual temperature were strongly

correlated (

 

r

 

 

 

≥

 

 0.97 in all cases), so here we use mean annual

temperature. To obtain estimates of mean annual temperature

for the 22 sites in this study, we used common linear interpola-

tion techniques (e.g. Lieberman 

 

et al.

 

, 1996; Allen 

 

et al.

 

, 2002).

Hereafter, we refer to mean annual temperature simply as

‘temperature’.

We generated NPP values for each site by overlaying site

localities on a GIS NPP data layer obtained from the NASA

MODIS Land Algorithm (MOD17A3) at 1-km spatial resolution

(data acquired in 2004 and 2005) (Running 

 

et al.

 

, 2004). Because

the resolution at which the NPP data were collected is much

greater than the scale at which the ant species richness data were

collected, and because the NPP estimates are derived from an

algorithm with a series of assumptions that might not necessarily

hold, we also used the normalized difference vegetation index

(NDVI) as an estimate of NPP. NDVI is a measure of greenness

calculated from reflectance in the near-infrared and red portions

of the electromagnetic spectrum. The values of NDVI range

from 

 

−

 

0.2 to +1 globally. Within our study region, NDVI ranged

from +0.32 to +0.44. Here, NDVI correlates strongly with

NPP, and is frequently used as an estimate of productivity

(Oindo, 2002; Hurlbert & Haskell, 2003; Kerr & Ostrovsky, 2003;

Hurlbert, 2004). We generated NDVI values at a 250-m resolution

for each site by overlaying site localities on a GIS NDVI data layer

obtained from the NASA MODIS data base (data acquired in

2004 and 2005).

 

Analyses

 

To test whether the species–temperature or species–productivity

hypotheses were supported across three spatial grains, we used

separate stepwise multiple regressions (

 

P

 

 to enter = 0.10) to ask

whether log-transformed NPP, log-transformed NDVI and log-

transformed mean annual temperature predicted species

richness at each spatial grain. To remove the effect of sampling

on species richness, we also calculated Fisher’s 

 

α

 

 for each site.

After tallying the number of occurrences of each species in the 16

1-m

 

2

 

 quadrats, we used 

 



 

 (Colwell, 2005a) to calculate

Fisher’s 

 

α

 

 for each site. Using a stepwise linear regression, we

then tested how well log-transformed NPP, log-transformed

NDVI and log-transformed mean annual temperature predicted

Fisher’s 

 

α

 

. To reiterate, relating Fisher’s 

 

α

 

 to the environmental

variables allows us to test whether these environmental factors

affect richness in some way other than by the sampling mechanism.

We used 

 



 

 6.0 (SAS, Cary NC) to conduct all regressions.

Because spatial autocorrelation can cause non-significant rela-

tionships to appear significant when using traditional statistical

approaches, we assessed the potential effects of spatial auto-

correlation in several ways. First, we used 

 



 

 1.1 (Rangel 

 

et al.

 

,

2006) to calculate the modified 

 

t

 

-test developed by Dutilleul

(1993) and promoted by others (Legendre 

 

et al.

 

 2002; Diniz-

Filho 

 

et al.

 

, 2003). The modified 

 

t

 

-test tests for significant

relationships between the environmental variables and the

dependent estimates of ant species richness, factoring out the

effects of spatial autocorrelation. In the results we indicate when

we used these corrected probabilities by labelling the 

 

P

 

-values as

‘corrected 

 

P

 

’. Second, as a test of whether any of the response or

predictor variables were spatially autocorrelated (Diniz-Filho

 

et al.

 

, 2003), we used 

 



 

 1.1 (Rangel 

 

et al.

 

, 2006) to calculate

Moran’s 

 

I

 

. We calculated Moran’s 

 

I

 

 across eight spatial distance

classes for ant species richness at each of three spatial grains

(1-m

 

2

 

 quadrats, 50 

 

×

 

 50 m plots, Chao2 estimated richness) and

for Fisher’s 

 

α

 

. Third, we asked whether the residuals from the

stepwise regression models described above were spatially

autocorrelated by calculating Moran’s 

 

I

 

 on them. If no spatial

autocorrelation is found in the residuals of the model including

the environmental factors, then there is no statistical bias

introduced by spatial autocorrelation in the original regression

(Legendre 

 

et al.

 

, 2002; Diniz-Filho 

 

et al.

 

, 2003).

To test the predictions of the MTE, for each spatial grain we

used 

 



 

 6.0 to implement Model I OLS linear regression

(following Brown 

 

et al.

 

, 2004) to relate ln(species richness) at each

spatial grain to 1/

 

kT

 

. The first prediction is that the relationship
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is linear and negative. The second prediction is that slope is

somewhere near 

 

−

 

0.65. In addition, we also use Dutilleul’s

(1993) 

 

t

 

-test to test the significance of slopes based on the geo-

graphically effective degrees of freedom, though the original

investigators (Allen 

 

et al.

 

, 2002; Brown et al., 2004) did not take

this additional precaution. A key assumption of the MTE is

that the abundance and average body mass of ectotherms are

constant among samples. This assumption is not met here, nor

was it met in the original tests of the theory (Allen et al., 2002;

Brown et al., 2004) or more recent tests (Algar et al., 2006,

Hawkins et al., 2007). Prior to analysis, richness at the smallest

spatial grain was ln(x + 1)-transformed to prevent negative

species richness values.

To test whether the observed richness pattern at each grain was

predicted by the MDE, we used  4.0 (Colwell,

2005b) to estimate predicted richness under the assumption of

random placement of species ranges along the elevational gradi-

ent.  4.0 randomly reassigns the location of each

species’ range (1000 times) within the domain (379–1742 m),

then generates a mean predicted richness value for each of the 22

sites. We then examined the relationship between predicted

richness at each grain and observed richness using simple linear

regression. We defined the domain as the elevational range

considered in this study. When we defined the domain as ranging

from 0 to1742 m, the results did not qualitatively differ.

RESULTS

In total, we detected 38 leaf litter ant species at the 22 sites. The

number of species per m2 ranged from 0–10, and the number of

species per 50 × 50 m plot varied from 2–22. The Chao2 estimates

of site richness ranged from 4–34 species. In 20 of the 22 sites,

the estimators reached an asymptote, indicating that further

sampling with the same methods would probably have added no

new species. The four estimates of ant species richness (average

number per m2, number per 50 × 50 m plot, Chao2 estimated

richness and Fisher’s α) were correlated with one another (r = 0.67

to 0.90, n = 22, P ≤ 0.0007; Fig. 1). Richness at each spatial grain

declined with elevation (r = −0.83 to −0.64, n = 22, corrected

P ≤ 0.015). Mean annual temperature decreased with elevation

(r = 0.99, corrected P < 0.0001). However, there was no relation-

ship between elevation and NPP (r = 0.34, corrected P = 0.17) or

NDVI (r = 0.50, corrected P = 0.12). NPP, temperature and

NDVI did not covary with one another across the elevational

gradient (corrected P > 0.12 in all cases).

At the 1-m2 quadrat spatial grain, standard multiple regression

indicated that log(temperature) explained 42.7% of the variation

in the mean number of species per m2, and log(NPP) explained

an additional 10% of the variation (Table 1). At the 50 × 50 m

plot grain, log(temperature) explained 66% of the variation in

species richness, with log(NPP) explaining an additional 9% of

Figure 1 Relationships between richness at three spatial grains and Fisher’s α: the mean number of species detected per 1-m2 quadrat, the 
number of species detected in the 50 × 50 m plot at each site, the Chao2 estimate of richness and Fisher’s α.
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the variation in richness (Table 1). At the largest spatial grain,

log-transformed temperature explained 62% of the variation in

the Chao2 estimate of richness, and no other variable entered the

model. Log-transformed (temperature) explained 67% of the

variation in Fisher’s α, with log(NPP) explaining an additional

12% of the variation (Table 1). When log(NPP) entered the

model at each spatial grain, the parameter estimate was negative.

There was little evidence that species richness was spatially

autocorrelated, except at the largest distance classes, where

richness was negatively spatially autocorrelated (see Table S1 in

Supplementary Material). Fisher’s α was positively spatially

autocorrelated at the smallest spatial grain, indicating that

assemblages with high values of Fisher’s α tended to be close to

one another (Table S1). Fitting the climate model including log-

transformed NPP, log-transformed NDVI and log-transformed

mean annual temperature removed all of the significant spatial

autocorrelation in the richness data across all distance classes

(see Table S2 in Supplementary Material). This confirms that the

spatial variation in the environmental variables, most notably

mean annual temperature, drives these diversity gradients at

each spatial grain.

Consistent with a prediction of the MTE, at each spatial grain,

ln(species richness) decreased with inverse temperature (1/kT)

(Fig. 2). In no case did the slope of the relationship fall between

−0.60 and −0.70, as the MTE predicts (Table 2). However,

the large confidence intervals encompassed −0.60 and −0.70 at

the m2 grain and the 50 × 50 m plot grain, but not at the largest

spatial grain (Table 2).

The MDE did not predict richness at any grain in any of the

models (r2 < 0.01 in all cases).

DISCUSSION

Our key result is that, across three spatial grains from 1-m2

quadrats to approximately 50 × 50 m plots, warmer sites have

more species than cooler sites, but sites with higher primary

productivity do not have higher species richness. In addition,

the relationship between diversity and temperature is not driven

by the sampling mechanism, as Fisher’s α was predicted by

temperature but not primary productivity. We found some support

for the predictions of the MTE, but no support for the mid-

domain effects null model. Thus, our data are best explained

by some version of a species–temperature hypothesis.

Species–temperature and species–productivity 
hypotheses

Though productivity is often positively correlated with species

richness (Mittelbach et al., 2001), we found that productivity and

Table 1 Results of stepwise multiple regression examining the 
effects of log[mean annual temperature (°C)], log[NPP (g C m−2 
year−1)] and log(NDVI) on ant species richness at three spatial grains 
and Fisher’s α. 

Variable Parameter

Partial 

r2

Model 

r2 F Probability

m2 quadrat richness

log(temperature) 10.69 0.43 0.52 10.86 0.001

log(NPP) −7.53 0.10 3.78 0.07

50 × 50 m plot richness

log(temperature) 38.28 0.66 0.74 33.93 <0.001

log(NPP) −20.65 0.09 6.92 0.02

Chao2 estimated richness

log(temperature) 27.97 0.62 0.62 32.42 <0.001

Fisher’s α
log(temperature) 11.72 0.67 0.79 39.25 <0.0001

log(NPP) −7.31 0.12 10.73 0.004

Figure 2 The relationships between ln(richness) at three spatial grains and the inverse of temperature.

Table 2 Summary of the relationship between ln(species richness) 
and the inverse of temperature (K) at three spatial grains. 

Grain Slope 95% CI r2

Corrected 

probability

1-m2 quadrat −0.51 −0.76 to −0.27 0.49 0.001

50 × 50 m plot −0.95 −1.21 to −0.69 0.74 0.001

Chao2 estimate −1.04 −1.31 to −0.77 0.77 0.001
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ant species richness were negatively correlated. Why might the

relationship between productivity and richness or abundance be

negative? Hurlbert (2004) recently found a negative relationship

between the abundance of birds and a proxy for productivity

(NDVI) in North American forests, but a positive relationship in

grasslands. To explain this unlikely result, he suggested that the

effective survey area was smaller in forests than in grasslands,

but he did not rule out the possibility that there might be real

differences in the way that individuals in forests and grasslands

respond to increasing productivity. We also cannot rule out the

possibility that forest assemblages respond to productivity dif-

ferently than do assemblages in other habitat types. This seems to

us to be a rich area for future research. Another possibility for the

negative richness–productivity relationship is that at high levels

of productivity, other factors limit richness (Hawkins et al.,

2003). This might be a likely explanation for our result because

of the relatively high levels of productivity in the southern

Appalachians and because so little variation in productivity

existed among our study sites. That is, the range of NPP is still

relatively small compared with global gradients in NPP. So it

could be the case that NPP is positively correlated with richness

at global scales (Kaspari et al., 2000a, 2003; Pautasso & Gaston,

2005), but at smaller spatial extents, such as along elevational

gradients where the range of NPP is smaller, it is not.

In addition, productivity on its own may not be an accurate

predictor of ant species diversity for several reasons. First, pro-

ductivity might not be the best measure of resource availability to

ants, or any heterotroph for that matter (Clarke & Gaston, 2006).

That is, it is unclear whether traditional estimates of the energy

available, such as productivity or biomass production, really

equate to the resources that ants require. For example, much of

that biomass will be tied up in lignin and cellulose, which the

ants cannot use directly, even if they were strictly herbivores.

Second, ants generally forage in only a narrow portion of their

thermal range (Cerdá et al., 1997, 1998). The greater number of

days when foraging is possible at warmer sites means that ants

can access a higher proportion of available resources and thus

the energy available to them is greater. The richness of a local

community might then be a function of productivity on those

days warm enough, but not too warm, for ants to be active. This

simple and intuitive mechanism is akin to the mechanism Turner

et al. (1987) proposed for why temperature is correlated with the

local richness of butterflies and moths in Great Britain and Currie’s

(1991) notion that ‘benign environments permit more species’.

Such straightforward hypotheses might have multiple underlying

mechanisms, but the key point is that warmer temperatures

might allow access to available resources. Thus, for any such

temperature–resource mechanisms, the key prediction is that,

when productivity is held constant, richness should increase with

increasing numbers of days warm enough to be active.

It is unlikely that sites with higher temperature have more

species only because local assemblages are simply sampling from

the regional species pool, as the sampling mechanism predicts.

Fisher’s α, which removes the effect of sampling, still tracked

temperature. This result suggests that some sites are more species

rich because those sites have higher abundance, and thus lower

probabilities of extinction. In fact, if we tally the number of

occurrences (the number of 1-m2 quadrats a species is detected

in) as an estimate of abundance (following previous authors:

Kaspari et al., 2000a,b, 2003; Longino et al., 2002) and plot richness

against abundance, the relationship is strong and positive at each

spatial grain and for Fisher’s α (Table 3), indicating that some

sites have more species because the probability of local extinction

is reduced. This result, along with the positive relationship

between Fisher’s α and temperature, supports the abundance–

extinction mechanism.

The metabolic theory of ecology

The results from our study support one prediction of the MTE,

namely that ln-transformed species richness should be linearly

associated with an inverse rescaling of annual temperature (Allen

et al., 2002; Brown et al., 2004). At the smallest grain a second

prediction was supported, namely that the slope we observed did

not differ from the slope predicted by the MTE. However, the

confidence intervals were large and would have included any

slope from −0.76 to −0.27. At the largest grain, the confidence

intervals did not include values between −0.60 and −0.70. Do

other elevational diversity gradients follow the predictions of the

MTE? Apparently they do (Allen et al., 2002; Brown et al., 2004).

Allen et al. (2002) show that elevational gradients in both Costa

Rican trees and Ecuadorian amphibians support the predictions

of an earlier version of the MTE, and Brown et al. (2004) report

that amphibians on the Volcan Barva transect in Costa Rica

support the predictions of the MTE. To our knowledge, there have

been no other tests of whether the MTE can explain elevational

diversity gradients.

Although we cannot reject the MTE, at least at small grains, we

question whether the MTE alone can be expected to adequately

and consistently explain most elevational diversity gradients

[note that Allen et al. (2002) emphasize that factors other than the

MTE can influence diversity gradients]. First, the MTE posits that

temperature and richness are correlated because temperature

influences speciation rates. Species richness might be a function

of temperature because temperature increases mutation rates,

speeds up molecular evolution and thereby increases speciation

rates (Rohde 1992; Allen et al., 2002). However, to our knowledge,

there remains relatively little empirical support for the notion

that temperature limits mutation and recombination rates, and

that these rates limit speciation (Bromham & Cardillo, 2003;

Currie et al., 2004; Cardillo et al. 2005; Evans & Gaston, 2005).

Table 3 Results of linear regression of richness at three spatial 
grains and Fisher’s α against abundance. 

Spatial grain r2 Probability

m2 quadrat richness 0.99 <0.0001

50 × 50 m plot richness 0.78 <0.0001

Chao2 richness 0.48 0.0004

Fisher’s α 0.45 0.0007
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Even if there were convincing evidence (see Allen et al., 2006), it

seems unlikely that incipient speciation events along the

elevational gradient studied here could drive patterns of diversity

or that they would do so identically on elevational and latitudinal

gradients.

One criticism of our work presented here might be that in an

area this small, it is unlikely that there will be sufficient variation

in speciation rates for the ants in the regional species pool to be

an appropriate system for investigating the relative contribution

of the MTE. We agree that attempting to link speciation rates to

elevational diversity gradients might not be fruitful. However, we

note that in the two key papers (Allen et al., 2002; Brown et al.,

2004) outlining how the MTE shapes diversity gradients, data

from elevational gradients make up half of the diversity gradient

figures. Brown et al. (2004) note that ‘This result holds true not

only along latitudinal gradients, but also along elevational gradi-

ents where variables such as photon flux, seasonal changes in day

length, and biogeographic history are held relatively constant’.

We argue that the theory was developed, at least in part, to

explain elevational gradients and latitudinal gradients.

A second reason why we question whether the MTE alone can

explain elevational diversity gradients is that a number of

geographical data sets find little support for the predictions of

the MTE (Hawkins et al., 2007). Of 46 geographical data

sets analysed by Hawkins et al. (2007) (none of which were

elevational gradients), nine at most hinted at some support for

the specific predictions of the MTE, and the relationship between

temperature and richness was both taxonomically and geo-

graphically variable (Hawkins et al., 2006). In our data set, the

strongest support for the MTE as an explanation for elevational

diversity gradients occurs when diversity is estimated as the

number of species per m2 quadrat. At larger grains, the predictive

power weakens, and the slope does not fall between −0.60 and

−0.70 when we use the Chao2 estimate of richness. Species richness

estimators such as the Chao2 are sensitive to the sampled data,

but one view (Gotelli & Colwell, 2001) is that it makes little sense to

compare communities, or what structures them or determines

the number of species in them, unless sampling is complete. To our

knowledge, only one previous test (Kaspari et al., 2004) of the pre-

dictions of the MTE has used estimated richness. All other studies

assumed that species were completely sampled from communities.

In one of the first independent tests of the predictions of the

MTE, Kaspari et al. (2004) found that broad-scale patterns of ant

diversity supported the earlier predictions of Allen et al. (2002),

namely that the slope of ln(richness) against 1000/T would

approximate −9.0. Since Allen et al.’s (2002) development of the

theory, the activation energy underlying the MTE has been

altered from 0.78 in Allen et al. (2002) to c. 0.65 in Brown et al.

(2004), as has the independent variable [Allen et al. (2002), 1000/

T; Brown et al. (2004), 1/kT]. Thus, it is unclear whether the

analysis by Kaspari et al. (2004) would still find strong support

for the MTE using the updated formulation of the theory, or

whether the results presented here would agree with those

presented in Kaspari et al. (2004). Furthermore, in the meta-

analyses by Hawkins et al. (2007), the ln-transformation of ant

species richness in 1° × 1° quadrats in Colorado and Nevada

(data from Sanders, 2002) regressed against 1/kT was actually

positive, not negative as the MTE predicts. Taken together, it

seems unlikely that patterns of ant diversity are consistently

predicted by the MTE across either spatial grains or extents.

Mid-domain effects

We found no support for mid-domain null models in this system.

Mid-domain effect null models have received increasing

attention as potential explanations for patterns of species richness

along a variety of domains (e.g. Colwell et al., 2004; Dunn et al.,

2006). Mid-domain effect null models predict the pattern of

richness expected in the absence of strong gradients on the

location of species ranges. Other studies have found support for

MDE null models, often to the exclusion of other candidate

variables (e.g. Sanders 2002; Colwell et al., 2004; Dunn et al.,

2007a). Several recent authors have suggested that both the

predictions of the MDE and its underlying assumptions lack

empirical support (e.g. Zapata et al., 2003, 2005; Hawkins et al.,

2005). Recent work suggests that the explanatory power of the

MDE can depend on the size of the domain, with the MDE

explaining little of the variation in species richness along small

domains (e.g. Dunn et al., 2006). We suspect that at least for ants

in this study, the strength of the gradient in temperature is such

that it swamps the effects of geometric constraints.

Spatial grain and species richness

Temperature had an over-riding influence on richness at each

spatial grain in this study, perhaps because it limits abundance.

There was some evidence that the explanatory power of tem-

perature was limited at the smallest 1-m2 quadrat spatial grain.

This suggests that some other factor, such as the availability of

nest sites (e.g. Armbrecht et al., 2004) limits richness at the

smallest grains (Table 3). At this grain, local interactions for

these limiting resources might limit abundance, and therefore

richness. However, as grain increases, more heterogeneity in the

environment is introduced, and environmental factors, such as

temperature, begin to control diversity. This agrees with previous

work on global ant diversity gradients (Kaspari et al., 2000a,

2003). Taken together, our results may suggest a switch from

direct local control on ant species richness by competition for

limiting resources at small grains to regional control on richness

by temperature at large grains. That is, at both small and large

grains, abundance is likely to limit richness. But at the largest

grain, we suggest that temperature limits abundance, and therefore

richness. At the smallest grain, limiting resources regulate

abundance, and therefore richness.

CONCLUSIONS

Comprehensive analyses of global data sets by Kaspari and

colleagues (Kaspari et al., 2000a,b, 2003, 2004) have highlighted

the role that NPP and temperature play in limiting ant diversity.

The work presented here builds on these global analyses by

focusing on the determinants of ant species richness at a smaller
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spatial extent along elevational gradients where productivity and

temperature do not covary. Two of the key findings from

Kaspari’s work on global ant diversity are: (1) spatial grain matters;

and (2) abundance, temperature and NPP, but not geometric

constraints, predict diversity. Our results are congruent with

results from global scales in that we find that temperature

(Kaspari et al., 2000a, 2003, 2004) and perhaps abundance

(Kaspari et al., 2000a, 2003) limit diversity. However, in contrast

to previous work at global scales, we found no effect of NPP on

diversity. The development of mechanistic theories of geographical

diversity gradients will be enhanced as we learn more about how

the mechanisms that generate and maintain diversity vary

among spatial grains, from m2 quadrats to biomes, and among

spatial extents, from elevational gradients to latitudinal gradients.

Nevertheless, it seems that, at least with the ants, some general

mechanisms are beginning to emerge.
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