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Abstract IntraspeciWc diversity can inXuence the struc-
ture of associated communities, though whether litter-based
and foliage-based arthropod communities respond to intra-
speciWc diversity in similar ways remains unclear. In this
study, we compared the eVects of host-plant genotype and
genotypic diversity of the perennial plant, Solidago altiss-
ima, on the arthropod community associated with living
plant tissue (foliage-based community) and microarthro-
pods associated with leaf litter (litter-based community).
We found that variation among host-plant genotypes had
strong eVects on the diversity and composition of foliage-
based arthropods, but only weak eVects on litter-based
microarthropods. Furthermore, host-plant genotypic diver-
sity was positively related to the abundance and diversity
of foliage-based arthropods, and within the herbivore and

predator trophic levels. In contrast, there were minimal
eVects of plant genotypic diversity on litter-based microar-
thropods in any trophic level. Our study illustrates that
incorporating communities associated with living foliage
and senesced litter into studies of community genetics can
lead to very diVerent conclusions about the importance of
intraspeciWc diversity than when only foliage-based com-
munity responses are considered in isolation.

Keywords Community genetics · Herbivores · 
Leaf litter · Microarthropods · Solidago altissima

Introduction

The diversity of primary producers has been positively
linked to the diversity of associated animals through the
provision of diVerent types of food and habitat resources
(Hutchinson 1959; Southwood et al. 1979). For example, it
is well established that plant species diversity positively
aVects the diversity of aboveground arthropods through
increased primary production and the presence of preferred
host plants (Siemann et al. 1998; Haddad et al. 2001). Yet,
most plant biomass is not consumed by herbivores and
returns to the environment as litter resources (Cyr and Pace
1993; Hairston and Hairston 1993). Litter is an important
interface between plants and the soil and supports a diverse
detrital community (Moore et al. 2004). While a few stud-
ies have shown that plant species diversity can positively
inXuence the diversity of litter animals by determining the
quality, amount, and structural complexity of leaf litter
inputs (Hansen 2000; Armbrecht et al. 2004), few general
conclusions have been made. By examining foliage- and lit-
ter-based communities simultaneously, we can enhance our
understanding of how diversity at lower trophic levels
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aVects diversity at higher trophic levels and whether the
responses of two community types are coupled (De Deyn
and Van der Putten 2005; Wardle 2006).

Like diversity among species, intraspeciWc diversity is
increasingly recognized as having an important inXuence
on the structure of associated communities and the function
of ecosystems (Whitham et al. 2003, 2006). For example,
foliage-based arthropods have been shown to respond to
genetically variable host-plant traits, such as plant biomass,
leaf nutrients, and leaf secondary chemistry, resulting in
unique suites of species on diVerent host-plant genotypes
(Maddox and Root 1987; Johnson and Agrawal 2005;
Wimp et al. 2005; Crutsinger et al. 2006). Consequently, as
the number of genotypes (i.e., genotypic diversity) within a
host-plant patch increases, so does the number of arthropod
species (Wimp et al. 2005; Johnson et al. 2006; Crutsinger
et al. 2006, 2008). DiVerent plant genotypes can also vary
considerably in the quantity and quality of litter they pro-
duce, resulting in genotype speciWc rates of decomposition
and nutrient release (Madritch and Hunter 2002; Schweit-
zer et al. 2005; Silfver et al. 2007). However, little is
known about the responses of litter-based communities to
intraspeciWc diversity (Madritch and Hunter 2005; Schweit-
zer et al. 2007), and no study to date has asked whether
there are congruent responses of the foliage- and litter-
based arthropods to plant genotypic diversity.

In this study, we examine the arthropod communities
associated with living plant tissue (hereafter the “foliage-
based community”) of tall goldenrod (Solidago altissima)
along with microarthropods associated with S. altissima
leaf litter (hereafter the “litter-based community”). Micro-
arthropods are important members of the litter-based com-
munity in many ecosystems because they often feed on the
microXora that are directly responsible for litter breakdown
(Maraun and Scheu 2000). While feeding, microarthropods
fragment leaf litter, thereby creating a new surface area for
microbial or fungal colonization and altering litter decom-
position and nutrient mineralization rates (Hansen 1999;
Heneghan et al. 1999; Gonzalez and Seastedt 2001). Previ-
ous results from this study system revealed substantial vari-
ation in foliage-based arthropod community composition
among genotypes (Maddox and Root 1987; Crutsinger
et al. 2006) and positive, non-additive responses of arthro-
pod species richness to S. altissima genotypic diversity dur-
ing the Wrst year of a common garden experiment
(Crutsinger et al. 2006, 2008). We also found that the qual-
ity of leaf litter varied among S. altissima genotypes: C:N
ratios varied by up to 62%, resulting in »50% diVerence
among genotypes in decomposition rate after 24 weeks in
the Weld. More than 60% of the original N and 50% of the
original mass was lost by the end of the experiment (Crut-
singer et al., in review). These diVerences in litter quality
suggest that litter-based microarthropod communities

should show strong responses to intraspeciWc variation in S.
altissima. Here, we examine the eVects of S. altissima
genotype identity and genotypic diversity on the diversity
and trophic structure of foliage-based and litter-based
arthropods. Foliage-based arthropod responses are from the
second year of a common garden experiment, with the
results from the Wrst year presented elsewhere (Crutsinger
et al. 2006, 2008). In addition, this paper focuses explicitly
on comparing the responses of the foliage-based and litter-
based communities, whereas previous work in this system
has focused entirely on the foliage-based community.
Because previous work in this system indicated that sub-
stantial variation exists among S. altissima genotypes in the
characteristics of foliage and senesced leaf litter, we pre-
dicted that: (1) species diversity and composition of the two
community types will vary among plant genotypes; (2) foli-
age- and litter-based arthropod diversity will be correlated
with one another if they are responding to intraspeciWc var-
iation in a similar manner (i.e., cueing in on the same genet-
ically variable host-plant traits); and (3) if both community
types vary among plant genotypes, then both foliage- and
litter-based diversity will increase with the number of plant
genotypes in a patch.

Materials and methods

Study system

Solidago altissima is a dominant and well-studied perennial
plant species found throughout eastern North America
(Semple and Cook 2006) and is host to a diverse foliage-
based arthropod community (Root 1996). Local popula-
tions of S. altissima vary greatly in size from just a few to
thousands of ramets, and genotypic diversity within natural
patches can range from 1 to more than 12 genotypes m¡2

(Maddox et al. 1989). Clones exhibit considerable inter-
clonal genetic variation in many plant traits that could have
substantial implications for both the foliage- and litter-
based communities, including aboveground biomass pro-
duction and green leaf and litter nutrient content (Maddox
and Root 1987; Abrahamson and Weis 1997; Crutsinger
et al. 2006, 2008). In east Tennessee, S. altissima makes up,
on average, 20% (range = 5–47%) of the aboveground bio-
mass in old-Weld plant communities (L. Souza, unpublished
data).

This research was conducted from 2005 to 2006 in an
old-Weld site at Freel’s Bend at the Oak Ridge National
Laboratory National Environmental Research Park near
Oak Ridge, Tennessee (35°58!N, 84°12!W). The study area
is made up of at least 21 separate old Welds that contain a
variety of plant species that are common in the southeastern
United States. Dominant species at the study site include
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S. altissima, Verbesina occidentalis, Verbesina virginica,
and Rubus spp.; sub-dominants include about 60 other her-
baceous and woody species (L. Souza, unpublished data).

IntraspeciWc plant diversity and foliage-based communities

In May 2005, we manipulated plot-level genotypic diversity
(the number of genotypes per plot) of S. altissima. We col-
lected 21 S. altissima ramets from local S. altissima patches
growing in Welds surrounding the study site, and identiWed
each ramet as a unique genotype by means of ampliWed
fragment length polymorphisms (AFLPs). All 21 genotypes
were approximately equally related (Crutsinger et al. 2006).
We propagated clones of each genotype from rhizome cut-
tings in a common greenhouse environment for 6 weeks
prior to planting in the Weld in 2005. We established sixty-
three 1-m2 experimental plots spaced 1 m apart in a 15-
m £ 20-m grid, with each plot randomly assigned to contain
12 individuals and 1, 3, 6, or 12 genotypes. The one-geno-
type treatment consisted of all 21 genotypes planted individ-
ually in two replicate monoculture plots. Genotype mixtures
(seven replicates each) were created by randomly sampling
from the pool of 21 genotypes with the constraint that no
two plots could have the same composition. The treatments
were comparable to natural levels of genotypic diversity
(Maddox et al. 1989). All treatments were randomly placed
within the common garden, and using a small Weld area
ensured that all plots were equally susceptible to coloniza-
tion by the local arthropod species pool. Each experimental
plot was lined with 12-ml heavy plastic 30 cm deep to pre-
vent rhizomes from spreading into neighboring plots
between years. A 3-m-tall fence made of 2.54-cm poultry
wire encircled the entire common garden to exclude deer.
For further details on the study site, common garden estab-
lishment, or AFLP analyses see Crutsinger et al. (2006).

In July 2006 (second year of the study), we used a com-
bination of techniques to sample the foliage-based arthro-
pod community. First, we visually surveyed each plot for
all sessile arthropod species, including galls, spittlebugs,
aphids, and leaf miners. Patches were then vacuum-sampled
for 5 min, followed by 15 person-min of hand collection for
larger arthropods. Vacuum and hand-collected samples
were taken back to the laboratory and identiWed to species
or morphospecies, counted, and assigned to trophic level
based on feeding morphology, observations in the Weld
(Crutsinger et al. 2006, 2008) and the literature (Fontes
et al. 1994). We compared these results to arthropod
responses in the Wrst year of the study (July of 2005), where
we visually surveyed every single ramet in the common
garden (Crutsinger et al. 2006, 2008). Both methods
yielded similar numbers of arthropod species (94 species
and 8,617 individuals in July 2005 versus 104 species and
13,224 individuals in 2006). Species accumulation curves

based on Chao1 richness estimator (Chao 1984) plateaued
in both years (Supplemental 1), indicating that the commu-
nities were adequately sampled and are comparable. We
also estimated aboveground net primary productivity
(ANPP) in each plot to ask whether ANPP was associated
with the responses of arthropods to the treatments. In
August 2006, we harvested aboveground biomass from
each plot, which was oven-dried at 60°C and weighed.

We used two separate multivariate ANOVAs to examine
the eVects of host-plant genotype or genotypic diversity on
foliage-based total, herbivore, and predator richness and
abundance together. We followed these analyses with indi-
vidual one-way ANOVAs with genotype identity or the
number of genotypes in a plot (Wxed factor) as the main
eVects in the models for each variable separately. We used
a separate analysis of similarity (ANOSIM) test based on
the Bray-Curtis similarity index (Bray and Curtis 1957) to
examine if overall foliage-based community composition,
as well as herbivore and predator composition, shifted
between survey years or varied among S. altissima geno-
types in 2006. ANOSIM is analogous to an ANOVA on
community similarity values. The generated R-statistic is a
relative measure of separation of deWned groups. A value of
0 indicates there is complete overlap in the community
composition between groups, while a value of 1 indicates
that there is no overlap (Clarke and Gorley 2001). We pres-
ent between-year diVerences graphically using non-metric
multidimensional scaling. ANOSIM and ordination proce-
dures were run using Primer statistical package (version 6;
21 Primer-E, Plymouth Marine Laboratory, Plymouth,
UK). We used separate one-way ANOVAs to examine
whether S. altissima genotype and genotypic diversity
aVected ANPP in 2006. For all analyses, variables were
log-transformed prior to analysis as necessary to improve
normality and homogeneity of variance.

IntraspeciWc plant diversity and litter-based communities

In autumn of 2005, we collected senesced leaf litter from
12 S. altissima genotypes from the common garden (see
description above). Litter was air dried, homogenized
between replicate plots of each genotype, and put into
decomposition bags (15 £ 15 cm) constructed of polyester
mesh. Mesh sizes were 3 mm on the top of each litterbag
and 0.5 mm on the soil surface to allow microarthropods
entry, but minimize loss of litter from fragmentation. Bags
were sealed on three edges using an impulse heat sealer
(United Plastics, Lima, Ohio), Wlled with 4 g of air-dried
litter, and sealed on the fourth edge. Four grams represents
the natural input of leaf litter produced in a 0.0225-m2 area
in the Weld (G. M. Crutsinger, unpublished data).

In spring 2006, we created mixtures of one, three, six, or
nine genotypes in litterbags. The one-genotype treatment
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consisted of 12 diVerent S. altissima genotypes in monocul-
ture with three replicates each. Mixtures were created by
randomly sampling from the pool of 12 genotypes with the
constraint that no two mixtures could have an identical
composition (5 random mixtures per level of diversity £ 3
replicates per random mixture). All mixtures contained
equal ratios of litter among treatments (1.33 g of each geno-
type for the three-genotype, 0.66 g each for the six-geno-
type, and 0.44 g each for the nine-genotype mixture).
Litterbags were randomized among treatments and placed
10 cm apart in a 10-m £ 20-m area of an old Weld immedi-
ately adjacent to the established common garden. We did
not place litterbags in the experimental plots because we
were interested in microarthropod responses to the litter
itself, rather than potential plot-level diVerences among
plant genotypes in factors such as soil nutrients or microcli-
mate. Treatments were randomized in their location and lit-
terbags were Wxed to the soil surface using stainless steel
nails. We collected bags after 3, 6, 12, and 24 weeks in the
Weld. An initial set of litterbags was transported out to the
Weld and returned to the laboratory to establish litter lost in
transit. In total, the experiment consisted of 405 litterbags.

At each collection date, we put litterbags inside individ-
ual paper bags and immediately returned them to the lab.
We extracted litter microarthropods from each litterbag for
72 h using modiWed Berlese-Tullgren funnels (Merchant
and Crossley 1970) made from 25-cm-diameter plastic fun-
nels with 0.5-cm-diameter hardware cloth in the bottom on
which litterbags were placed. A 25-W light bulb was hung
10 cm above the litterbags and microarthropods were col-
lected in plastic cups Wlled with 70% ethanol. Microarthro-
pods were counted, assigned individually to a trophic level,
and identiWed to species or morphospecies. In total, we
extracted 10,730 individuals of »140 morphospecies from
14 orders.

To examine the eVects of leaf litter genotype and geno-
typic diversity on total litter-based richness and abun-
dance, we used separate repeated-measures ANOVAs
with either genotype identity or genotypic diversity as
main eVects and total, predator, herbivore, and detritivore
richness and abundance as response variables, as well as
collembolan and mite richness and abundance. For signiW-
cant repeated-measures analyses, we followed up with
separate univariate ANOVAs for each response variable
within each collection date to determine when genotype
or genotypic diversity eVects occurred. We did not use
Bonferroni corrections for any of the analyses because
this can inXate the probability of committing type II errors
(Gotelli and Ellison 2004). We examined whether litter-
based community composition varied among plant geno-
types using separate ANOSIMs based on the Bray-Curtis
similarity index for each collection date. We correlated
the litter-based community with mass loss and C and N

content in the litter [see Crutsinger et al. (in review) for
the eVects of genotypic diversity on litter decomposition
and nutrient release]. Lastly, we asked whether diversity
within foliage-based communities correlated with that of
litter-based communities. To do this, we correlated foli-
age-based richness and abundance with litter-based rich-
ness and abundance associated with the 12 genotypes
used in both experiments.

Results

IntraspeciWc diversity and foliage-based communities

There was a shift in composition of the foliage-based com-
munity between 2005 and 2006 (global R = 0.975,
P = 0.001). Herbivore composition (global R = 0.971,
P = 0.001; Fig. 1a) and predator composition also diVered
between years (global R = 0.483, P = 0.01; Fig. 1b). Shifts
in composition might have been caused by new host-plant
ramet production within the plots. At the initiation of the
experiment, there were 12 ramets planted into each plot but
there were, on average, »123 (range 63–166) ramets per
plot the following year.

In 2006, S. altissima genotype identity had strong
impacts on total foliage-based arthropod richness and abun-
dance. We found the overall model including all variables
to be signiWcant (Wilks’ ! = 0.0017, P = 0.004). Total rich-
ness varied by approximately twofold (range: 20–38 spe-
cies) and abundance by threefold (range 97–304
individuals) among genotypes (Table 1). Genotype eVects
occurred across trophic levels: herbivore richness varied by
50% (Fig. 2a), herbivore abundance by 2.9-fold (Fig. 2b),
predator richness by 4.6-fold (Fig. 2c), and predator abun-
dance by ninefold (Fig. 2d) among genotypes. Overall com-
munity composition (global R = 0.435, P = 0.001, as well
as herbivore (global R = 0.44, P = 0.01) and predator com-
position (global R = 0.227, P = 0.013) also varied among S.
altissima genotypes.

In 2006, host-plant genotypic diversity was positively
related to total foliage-based arthropod richness and abun-
dance. We found the overall model including all variables
to be signiWcant (Wilks’ ! = 0.543, P = 0.01). Total rich-
ness was 22% higher (Fig. 4) and abundance was 34%
higher in genotypically diverse plots relative to monocul-
ture plots, though diversity eVects saturated quickly at
approximately three genotypes. Similar to genotype iden-
tity eVects, genotypic diversity eVects occurred across tro-
phic levels. Herbivore richness (Fig. 5a) was 16% higher
and abundance (Fig. 5b) was 34% higher in genotypically
diverse plots. Predator richness (Fig. 5c) was 36% higher in
genotypically diverse plots, but predator abundance
(Fig. 5d) showed no signiWcant response (Table 1).
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S. altissima genotypes varied by approximately Wve-
fold in ANPP, but ANPP showed no response to geno-
typic diversity during the second year of this study
(Table 1). Total foliage-based arthropod richness
(r = 0.62, P < 0.0001) and abundance (r = 0.64,
P < 0.0001) were positively correlated with plot-level
ANPP, but only in monoculture plots. Richness and abun-
dance were not related to ANPP in genotype mixtures
(P > 0.33 for both), indicating that plant biomass did not

drive observed increases in arthropod diversity in mixture
plots in 2006.

IntraspeciWc diversity and litter-based communities

As with the eVects of genotype identity, S. altissima geno-
typic diversity had weak eVects on the litter-based commu-
nity. Initially, there was an approximately fourfold
diVerence among genotypes in collembolan abundance at
3 weeks (Table 2; Fig. 3), and an approximately twofold
diVerence in collembolan richness at 12 weeks (Table 2;
Fig. 3). However, neither total microarthropod (Fig. 2) or
mite richness and abundance were aVected by leaf litter
genotype at any time (Table 2; Supplemental 2). Host-plant
genotype also had minimal eVects on the richness and
abundance of predators, herbivores, or detritivores (Supple-
mental 3). Microarthropod community composition varied
among genotypes (global R = 0.146, P = 0.05), but only at
the 3-week collection date and likely due to initial collem-
bolan responses.

As with genotype eVects, S. altissima genotypic diver-
sity also had weak eVects on the litter-based community. At
3 weeks, there were 90% more collembolan species and
Wvefold more collembolan individuals in three-genotype
mixtures compared to monocultures. At 12 weeks, there
were 1.2-fold more mite individuals in three-genotype mix-
tures. During the Wnal collection at 24 weeks, there were
36% fewer total species in nine-genotype mixtures, but 30%
more individuals in three-genotype mixtures compared to

Fig. 1 Non-metric multidimensional scaling ordination based on
Bray-Curtis similarities of a foliage-based herbivore and b predator
communities in 63 experimental plots of Solidago altissima plants in
2005 (open circles) and 2006 (Wlled circles). Each circle indicates a
community within an individual plot. Two-dimensional ordinations are
presented for simplicity, but three-dimensional representations main-
tained the lowest stress for both herbivores (stress = 0.07) and preda-
tors (stress = 0.19)

Table 1 ANOVA summary of Solidago altissima genotype identity
and genotypic diversity eVects on arthropods associated with living
plant tissue and aboveground net primary productivity. ANPP Above-
ground net primary productivity

SigniWcant P-values are shown in bold

df MS F P-value

Genotype

Total richness 20, 21 50.16 3.73 0.002

Total abundance 20, 21 6,568.20 5.24 0.0002

Herbivore richness 20, 21 11.07 2.16 0.043

Herbivore abundance 20, 21 5,031.05 4.81 0.0004

Predator richness 20, 21 15.32 4.56 0.0005

Predator abundance 20, 21 73.41 3.75 0.002

ANPP 20, 21 2,514,924.00 5.82 <0.0001

Genotypic diversity

Total richness 3, 59 125.37 5.07 0.003

Total abundance 3, 59 11,960.40 3.53 0.020

Herbivore richness 3, 59 9,985.88 3.60 0.018

Herbivore abundance 3, 59 28.88 3.93 0.012

Predator richness 3, 59 30.41 3.88 0.013

Predator abundance 3, 59 65.83 1.71 0.173

ANPP 3, 59 78,810.00 0.66 0.575
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monocultures (Table 3; Supplemental 2). There was no
response of the diVerent trophic groups to genotypic diversity
(Supplemental 4).

Leaf litter decomposition and N release were correlated
with several of the litter-based community variables, but
only weakly and not after 6 weeks in the Weld. At 3 weeks,
percent N remaining in litterbags was positively correlated
with mite richness (r = 0.25, P = 0.026) and total abun-
dance (r = 0.29, P = 0.009). Total abundance (r = 0.37,
P = 0.0008) and mite abundance (r = 0.32, P = 0.004) were
also positively correlated with percent mass remaining dur-
ing this time. At 6 weeks, total richness and collembolan
richness were positively correlated with percent N remain-
ing (r = 0.22, P = 0.04 for both).

When we examined the relationship between foliage-
and litter-based communities, we found no relationship
between species richness or abundance of the two commu-
nities (P > 0.35 for all correlations) (Fig. 6), indicating that
the two communities varied independently of one another
in their responses to host-plant intraspeciWc variation.

Discussion

This study revealed that variation among host-plant geno-
types aVected species diversity and composition of arthro-
pods associated with living plant tissue, but only weakly
aVected litter microarthropod communities. Foliage-based
species richness and abundance were positively related to
host-plant genotypic diversity, whereas genotypic diversity
had minimal eVects on the litter-based community. Simi-
larly, both foliage-based herbivore and predator diversity
and composition responded to plant genetic variation and
genotypic diversity, but litter-based trophic levels (herbi-
vores, predators, and detritivores) did not. There was no
relationship between foliage- and litter-based richness or
abundance, which suggests a decoupling in the biotic factors

Table 2 Summary of full model repeated-measure ANOVAs examin-
ing the eVects of S. altissima genotype identity on total microarthro-
pod, collembolan, and mite richness and abundance over time

SigniWcant P-values are shown in bold

df F P-value

Total richness

Genotype 11 1.11 0.36

Time 3 23.26 <0.0001

Genotype £ time 33 1.69 0.02

Total abundance

Genotype 11 1.23 0.27

Time 3 30.73 <0.0001

Genotype £ time 33 1.17 0.26

Collembola richness

Genotype 11 0.63 0.79

Time 3 11.79 <0.0001

Genotype £ time 33 1.33 0.14

Collembola abundance

Genotype 11 0.66 0.76

Time 3 6.87 0.0003

Genotype £ time 33 1.53 0.05

Mite richness

Genotype 11 1.26 0.25

Time 3 22.10 <0.0001

Genotype £ time 33 1.10 0.35

Mite abundance

Genotype 11 2.39 0.01

Time 3 10.32 <0.0001

Genotype £ time 33 1.15 0.29

Fig. 2 The relationship be-
tween a herbivore richness, b 
predator richness, c herbivore 
abundance and d predator abun-
dance and genotype identity of 
S. altissima in 2006. Bars repre-
sent mean (§SEM) number of 
species and individuals in 1-m2 
experimental plots
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that structure communities associated with living plant
material versus detritus within old-Weld ecosystems.

IntraspeciWc diversity and foliage-based communities

The responses of the foliage-based community, including
herbivore and predator trophic levels, to variation among
genotypes and genotypic diversity were strong between
study years, despite substantial shifts in community compo-
sition. Total richness was 37% greater and total abundance
was 56% greater in genotypically diverse plots in 2005
(Crutsinger et al. 2008) and total richness was 22% higher
and abundance was 34% higher in 2006. The ability of foli-
age-based arthropod species to discriminate genetic varia-
tion within host plants has been established in numerous
other plant species, including cottonwoods (Wimp et al.
2005), eucalyptus (Dungey et al. 2000), willows (Hochw-
ender and Fritz 2004), oaks (Tovar-Sánchez and Oyama
2006), and primrose (Johnson and Agrawal 2005). Like-
wise, observed increases in arthropod richness and abun-
dance with plant genotypic diversity in this study are
mostly consistent with other studies (Wimp et al. 2005;
Johnson et al. 2006), though few studies have sampled
arthropod communities for longer than one season (Wimp
et al. 2007). Taken together, there is broad support for the
notion that the identity and number of host-plant genotypes
within local patches are important drivers of foliage-based
arthropod diversity and community structure, particularly
within dominant or foundation plant species (Ellison et al.
2005; Whitham et al. 2003; 2006).

While the responses of arthropods to plant genotypic
diversity were consistent between years, the underlying
mechanisms were not. For example, increased ANPP
explained most of the positive arthropod responses to geno-
typic diversity during the Wrst year of the study (Crutsinger
et al. 2006, 2008), but we did not observe an increase in
ANPP during the second year. This was because several
highly productive genotypes growing in monocultures
swamped genotypic diversity eVects on ANPP. Despite no
increase in ANPP, there were still more arthropod species
in genotypically diverse plots. One possible explanation is
that arthropods still cue in on many of the other qualitative
traits that vary among S. altissima genotypes, such as leaf
nutrients or stem thickness (Abrahamson and Weis 1997;
Crutsinger et al. 2006, 2008). Previous results in this and
other studies (Johnson and Agrawal 2007) have indicated
that the cues arthropods use to discriminate between host
plants may change with the phenology of either the arthro-
pod species or host plants during a growing season (Crut-
singer et al. 2008). Therefore, the genetically based
mechanisms driving foliage-based community responses to

Fig. 3 The relationship between collembolan abundance at 3 weeks
(open squares) and collembolan species richness at 12 weeks into the
experiment (closed circles) and genotype identity of S. altissima. Bars
represent mean (§SEM) number of collembolan individuals or species
in litterbags. Other time steps during the 24 week experiment were not
signiWcant and are not presented for clarity

Table 3 Summary of full model repeated-measure ANOVAs examin-
ing the eVects of S. altissima genotypic diversity on litter microarthro-
pods over time. Gen div Genotypic diversity

SigniWcant P-values are shown in bold

df F P-value

Total richness

Gen div 3 0.45 0.71

Time 3 36.05 <0.0001

Gen div £ time 9 1.36 0.20

Total abundance

Gen div 3 0.55 0.64

Time 3 48.37 <0.0001

Gen div £ time 9 0.93 0.49

Collembola richness

Gen div 3 1.44 0.22

Time 3 15.16 <0.0001

Gen div £ time 9 2.52 0.008

Collembola abundance

Gen div 3 2.82 0.03

Time 3 1.36 0.25

Gen div £ time 9 2.70 0.004

Mite richness

Gen div 3 0.48 0.69

Time 3 35.58 <0.0001

Gen div £ time 9 1.20 0.29

Mite abundance

Gen div 3 1.72 0.16

Time 3 20.14 <0.0001

Gen div £ time 9 1.61 0.11
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intraspeciWc diversity likely change both within and among
years depending on which community members are present
and which plant traits they are responding to. Such tempo-
ral shifts add complexity to predictions of associated com-
munity composition based on host-plant genotypes (Shuster
et al. 2006; Whitham et al. 2006).

IntraspeciWc diversity and litter-based communities

While foliage-based arthropods demonstrated strong
responses to variation among S. altissima genotypes and
genotypic diversity, litter-based microarthropods showed
few responses, aside from some initial diVerences in col-
lembolan richness and abundance. These results are con-
trary to our initial predictions that litter-based communities
would respond to observed qualitative diVerences in litter
produced by the diVerent plant genotypes. Initial litter qual-
itative diVerences may have driven the observed collembo-
lan responses. For example, initial N content varied by 47%
among genotypes (Crutsinger et al., in review), and collem-
bolan richness was weakly related to percent N remaining
in litterbags at the beginning of the experiment. But litter-
bags had not been established in the Weld for very long and
contained few individuals. So no major conclusions can be
drawn from initial community diVerences among geno-
types. Also during the 3-week collection period, higher col-
lembolan richness occurred in three-genotype mixtures.

There were no diVerences in initial leaf chemistry among
genotypic diversity treatments that might explain this pat-
tern (Crutsinger et al., in review). Another potential mecha-
nism might be that collembolans responded positively to
increased structural heterogeneity from diVerent leaf sizes
or shapes among genotypes in mixtures (Armbrecht et al.
2004; Hättenschwiler et al. 2005; Wardle 2006), though we
did not explicitly test this hypothesis.

Our Wndings are consistent with the only other study, to
our knowledge, that has examined the eVects of genotype
mixing on microarthropods. Madritch and Hunter (2005)
manipulated diVerent phenotypes of turkey oak (Quercus
laevis) in monoculture treatments, and included one treat-
ment that contained equal proportions of each phenotype in
a mixture. They found no eVect of plant phenotype or litter
mixing on microarthropod communities. Perhaps relatively
weak (or nonexistent) responses of the leaf litter communi-
ties to plant genotypic diversity are not surprising, given
that litter-based communities show mixed responses to
plant species diversity manipulations in other systems
(Kaneko and Salamanca 1999; Hansen 2000; Armbrecht
et al. 2004; Wardle et al. 2006).

So why are there such discrepancies in foliage- and lit-
ter-based species responses to plant genetic variation and
genotypic diversity? After all, both communities rely on
tissue from the same individual plants. One explanation is
that foliage-based arthropods are more adept at distinguish-
ing host-plant qualitative diVerences than microarthropods.
For example, most aboveground herbivores show some
degree of speciWcity on particular host-plant species or
families, as well as feeding specialization on particular
plant parts (e.g., stems, leaves, Xowers) (Bernays and Chap-
man 1994; Bernays 1998). Aboveground arthropods are
also much more able to disperse to preferred hosts, com-
pared to species that occur in the litter or soil (Hooper et al.
2000). In contrast, microarthropod species are typically
thought to be generalists in feeding and habitat preferences
(Maraun et al. 1998; De Deyn and Van der Putten 2005),
though there is some evidence for trophic niche diVerentia-
tion (Schneider et al. 2004). Also, many microarthropods
are not necessarily feeding on the leaf litter directly, but
rather on bacterial or fungal decomposers or other microar-
thropods (Maraun et al. 1998; Schneider et al. 2004). Yet,
foliage-based predators do not feed directly on host plants,
and they responded strongly to host-plant genetic variation
and genotypic diversity. It is possible that microarthropod
communities are not aVected by the levels of variation in
litter quality among S. altissima genotypes and are struc-
tured by numerous other biotic and abiotic factors unrelated
to host-plant genetics (Maraun and Scheu 2000; De Deyn
and Van der Putten 2005; Wardle 2006). Bacterial or fungal
communities that feed directly on leaves might be more
sensitive to intraspeciWc diversity. For example, Schweitzer

Fig. 4 Relationship between population-level genotypic diversity of
S. altissima and total species richness in a foliage- and b litter-based
arthropod communities. Circles indicate plot-level observations and
horizontal lines indicate treatment means. Note that the litter commu-
nity had fewer species. Brackets connect the graphs to their corre-
sponding resource (living plant material or leaf litter)
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et al. (2007) examined soils under diVerent genotypes of
cottonwood (Populus angustifolia) and found that genetic
factors explained 70% of the variation in soil microbial
communities.

A caveat of our study is that all litterbags started with the
same amount of initial material in each litterbag. S. altiss-
ima genotypes varied by several fold in ANPP and so
genetic variation may aVect microarthropods by determin-
ing the amount of litter available for colonization (Wardle
2006). Also, the relative density of arthropod species in lit-
terbags was much lower than in the common garden plots,
which may have made it more diYcult to detect genotypic
eVects at the community level. Finally, we focused on how
microarthropods responded to characteristics of the litter
produced by diVerent plant genotypes. We did not examine
root herbivores, rhizosphere communities, or “bulk soil
communities” (e.g., fungi or nematodes) directly under
host-plant genotypes in our experimental plots. Another
approach would have been to collect senesced litter from a
plot, place it in a decomposition bag, and put the bag back
into the plot from which it came. However, such an
approach would not have allowed us to disentangle the
eVects of litter quality from the indirect eVects of the treat-

Fig. 5 Relationship between 
population-level genotypic 
diversity of S. altissima and a 
herbivore richness, b predator 
richness, c herbivore abundance 
and d predator abundance. Cir-
cles indicate plot-level observa-
tions and horizontal lines 
indicate treatment means

Fig. 6 Relationship between foliage-based richness and litter-based
richness for 12 S. altissima genotypes used in both the common garden
and litterbag manipulations. Lack of a correlation indicates a decou-
pling in the responses of the two communities to variation among host-
plant genotypes
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ment in the plot. By placing the bags in a common environ-
ment, we were able to focus solely on whether diVerences
among genotypes led to diVerences in litter-based commu-
nity structure.

Conclusion

In the past decade, two major foci of ecological research
have been on the role of biodiversity in ecosystem structure
and function (Hooper et al. 2005), and understanding the
links between the foliage-based and litter-based or below-
ground components of ecosystems (Wardle et al. 2004).
Our work, and that of others (Whitham et al. 2003, 2006;
Hughes and Stachowicz 2004; Johnson et al. 2006), has
highlighted the role of within-species diversity in structur-
ing communities and ecosystems. This study highlights that
the responses of foliage-based and litter-based arthropods
to intraspeciWc host-plant diversity are decoupled. Our
results illustrate that comparing trophic interactions among
community types associated with the same plant genotypes
can lead to very diVerent conclusions about the extent to
which intraspeciWc diversity structures associated commu-
nities.
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