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Abstract

Questions: Is it possible to predict the composition of local plant assemblages?

Trait-based approaches have offered some promise, especially in cases where

deterministic processes such as environmental filtering and niche differentiation

shape communities. In this study, we asked how much intraspecific variation

contributes to trait distributions within and among plant communities, and

whether trait distributions resulting from environmental filtering and niche dif-

ferentiation can predict accurately the relative species abundances of montane

plant species in local communities.

Location:West ElkMountains, Colorado, USA.

Methods:We collected functional trait, species composition and environmental

data from 14 sites along a broad climate gradient in Colorado, USA, ranging in

elevation from 2480 to 3560 m.We partitioned the variation within and among

sites into intraspecific and interspecific components, and compared the results to

values from a recent global meta-analysis, which examined intraspecific trait

variability patterns. We also used these data to parameterize statistical models

that have been shown to reproduce patterns associated with the processes of

environmental filtering and niche differentiation. We fit twomodels to the data,

one assuming that niche differentiation is invariant among sites, and another

assuming that niche differentiation varies among sites.

Results: We found that the trait-based models were worse at predicting species

relative abundances in local communities than a null model assuming equal

abundances of all species. One plausible explanation for the poor performance

of the models is that intraspecific variation in functional traits, which in our sys-

tem was higher than the global averages documented in the meta-analysis,

swamped the effects of interspecific variation in functional traits along the cli-

matic gradient. In particular, almost all variation in root traits was within rather

than among species, even among sites.

Conclusion: Our results suggest that a greater focus be placed on measuring

intraspecific trait variability and determining its consequences for community

assembly and ecosystem properties.

Introduction

Community ecologists seek to describe the ways in which

environmental conditions and interactions among organ-

isms influence patterns in the distribution and abundance

of species across space and time. Ignoring for now the

sometimes heated debate over whether stochastic or deter-

ministic processes shape communities, ample evidence

shows that easily measured organismal traits often corre-

late with environmental tolerances and can determine the

outcomes of biological interactions (Grime 1979; Lavorel &

Garnier 2002; Lavorel 2013; D�ıaz et al. 2016). This key

insight has led to a massive research effort aimed at linking

functional traits of species to ecosystem function and com-

munity assembly, especially in plant communities (McGill

et al. 2006; Levine 2016). Here, functional traits are

defined as any property of an organism that is correlated

either with its niche or its fitness. The functional trait

approach might offer a way to deal with a bugbear of com-

munity ecologists: results of community ecology studies
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are often difficult to interpret or generalize. This is because

community assembly processes often depend heavily on

the specific local composition of the species pool and on

small-scale environmental variation; hardly any two com-

munities are the same (Lawton 1999; Ricklefs 2008). By

measuring functional traits instead of focusing on species

identity, ecologists can make quantitative comparisons

among species assemblages (McGill et al. 2006; Webb

et al. 2010). Furthermore, functional traits are not only

correlated with climate but also with emergent ecosystem-

level properties such as carbon turnover (De Deyn et al.

2008; Reichstein et al. 2014). The ultimate goal of func-

tional trait ecology, which has been described as the holy

grail of the field (Lavorel & Garnier 2002; Funk et al.

2016), should be to predict variation and change in com-

munity composition and ecosystem function from func-

tional traits.

Despite its promise, the functional trait approach has

borne the brunt of several critical reviews (Violle et al.

2007; Laughlin & Messier 2015). In particular, the correla-

tional nature of many trait studies is problematic because

the correlations between environment and traits are often

examined in isolation. This ignores processes such as filter-

ing, selection and plasticity that might have generated the

observed trait and species distributions. Moreover, in

many trait-based ecological studies, functional traits have

often been used as proxies for species, but they should

instead be thought of as ways to represent processes occur-

ring at the organism level. Traits are poor proxies for spe-

cies identity for three reasons: the multidimensional

nature of traits (Albert et al. 2010), the strong relationship

between traits and environmental conditions (Laughlin &

Messier 2015), and high levels of intraspecific variability

even in similar environments. Ecological outcomes such as

herbivore damage can be predicted only when accounting

for complex interactions of traits along multidimensional

axes (Loranger et al. 2013). In addition, individual

responses to environmental gradients are necessary to

explain species distributions and diversity patterns, as has

been shown for forest trees (Clark et al. 2011) – when

examining the relationship between traits and fitness, we

must account for the trait–environment interaction

(McGill et al. 2006; Shipley et al. 2016).

Perhaps the worst omission in many previous studies

has been documenting or including intraspecific variation

in traits and acknowledging that intraspecific variation

might influence community assembly (Crutsinger et al.

2008). For example, earlier trait-based assembly models

such as MaxEnt (Shipley et al. 2006, 2011) are based

solely on species means. Other studies have examined

how variation in traits within a particular dominant (Crut-

singer et al. 2009) or foundation (Whitham et al. 2006)

species might influence assembly of associated

communities. However, few studies have considered how

intraspecific variation in key functional traits among all

species might influence community assembly, especially

along climatic gradients.

In this study, we suggest new approaches to move the

field of functional trait ecology forward in two key ways.

First, we explicitly incorporate intraspecific variation into

our statistical models, building on previous work (Laughlin

& Laughlin 2013; D’Amen et al. 2017; Laughlin et al.

2015). Second, we quantify how much the variation in

trait values within and among species contributes to

observed species abundance distributions within local

communities. To do this, we fit a predictive statistical

model that incorporates both filtering (i.e. relative fitness

differences) and niche differentiation processes

(HilleRisLambers et al. 2012) and includes variation in

these processes along environmental gradients (Read et al.

2014). Both relative fitness differences and stabilizing

niche differences contribute to the realized abundance dis-

tribution at a given site. Our approach uses functional

traits to tackle the most important problem in ecology:

describing the linkages between environment and species

and predicting future change in those linkages. In this

study, we established plots at 14 observational sites along a

transect where we collected data on relative species abun-

dance and functional traits of the most abundant species.

We used these data to ask a series of related questions:

� Howmuch does intraspecific variation contribute to trait

distributions observed within and among plant commu-

nities? How does intraspecific variation in this system

compare to levels observed globally? How does this differ

above-ground and below-ground, and what does this

mean for the processes that drive community assembly?
� How do environmental filtering and niche differentia-

tion interact to structure plant communities across a

landscape, and can we use the trait distributions result-

ing from these processes to predict relative species abun-

dances given climate?

Methods

Site description

The study region is in the West Elk range of the southern

Rocky Mountains in Colorado, USA, near the Rocky

Mountain Biological Laboratory. Elevations of the study

sites range from 2480 to 3560 m a.s.l. Mean annual tem-

peratures, derived from the Worldclim data set (Hijmans

et al. 2005) range from �1.8 to 2.7 °C, and mean annual

precipitation from 355 to 679 mm�yr�1. The long-term

temperature averages derived from the Worldclim data are

closely correlated with temperature data we collected at
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the sites in 2015 (R2 = 0.67); these temperatures likely

represent the long-term climatic filters that have acted on

these (mostly) perennial species, rather than just a one-off

measure of local temperature. The study sites are located

on an elevational gradient along which temperature

decreases and precipitation increases with increasing ele-

vation (Appendix S1). In addition, soils at higher eleva-

tions have increased available P and decreased available N

(J. Lynn, unpublished data). We selected 14 open meadow

sites without tree cover. At each of the study sites, we

established a permanently marked 10 m 9 10 m plot.

Data collection

Plant community

In the summer of 2015, we measured the relative abun-

dance of plant species at each site. We placed a 0.25-m2

quadrat at ten random locations in the 10 m 9 10 m plot,

and visually estimated the above-ground cover of all vas-

cular plant species within each quadrat, identifying them

to species. Species with <10% relative cover were esti-

mated to the nearest 1%, while species with >10% were

estimated to the nearest 5%. At each plot, we surveyed rel-

ative abundance during both the early season and peak

season. We used the relative cover of the plant species to

determine which plant species to collect for plant traits, as

well as to validate model predictions of relative species

abundances.

Plant traits

In 2014 and 2015, we collected leaves and roots from at

least five individuals of at least five of the most abundant

species at each site within the marked plot. Two sites were

sampled more intensively (10–20 individuals of 5–15 spe-

cies) as part of a related study. For most sites, we have

plant trait information for the species that make up at least

80% of the above-ground plant cover within the sites. We

followed standardized trait measurement protocols (P�erez-

Harguindeguy et al. 2013) to measure plant height, leaf

mass:area ratio, leaf dry matter content, leaf N:P ratio and

SRL. In total, we measured traits on 891 individuals of 52

species across the 14 sites. We measured the full suite of

traits on 421 of those individuals, which we used for model

fitting. We measured plant height of all individuals from

the base to the tip of the topmost leaf blade, measuring per-

pendicular to the ground rather than along the stem.

We collected at least three mature and fully expanded

leaves from each individual that we sampled for leaf traits.

We transported the leaves on moist paper towels and

scanned them on an Epson flatbed scanner. We weighed

the scanned leaf material, dried it for 48 h at 60 °C, and
then weighed it again. We pooled the dried leaf material

with additional leaves that were collected for chemical

analysis.

We collected two to four 2.5-cm diameter, 15-cm long

soil cores from directly below the base of each plant that

we sampled for root traits, following protocols from other

published studies (e.g. Tjoelker et al. 2005; Orwin et al.

2010; Kraft et al. 2015). We extracted as much fine root

material as possible from the soil cores, washing the soil

over a 2-mm sieve if necessary. We scanned ten to 20

intact pieces of fine root from each individual on an Epson

flatbed scanner after floating the root pieces in a transpar-

ent tray of water. We dried the root material for 48 h at

60 °C andweighed it.

To measure N and P content by mass (total Kjeldahl N

and P) of the dried tissue samples (both leaf and root), we

first ground the tissue samples with a mortar and pestle.

We weighed 75 mg, or as much as was available, of the

ground sample and folded it into a piece of adhesive-free

cigarette paper. We digested the sample for 5 h at 350 °C
in 5 ml H2SO4 in a Kjeldatherm digestion block (Gerhardt,

K€onigswinter, DE). After the digests cooled, we added

45 ml deionized water to each sample. We used a

SmartChem 200 discrete analyser (Unity Scientific, Brook-

field, CT, US) to measure total Kjeldahl N and P, expressed

as mg�g�1 tissue.

We measured the area of the scanned leaf images, and

the total length of the scanned root images, with ImageJ

software (v 1.45s; Schneider et al. 2012), using the IJRhizo

macro (Pierret et al. 2013) to automatically trace all the

roots in each image. We calculated leaf mass:area ratio

(LMA; g�m�2) for each individual plant by summing the

mass and area of each individual and dividing the dry mass

by the scanned area. Leaf dry matter content (LDMC;

g�g�1) was calculated as the dry leaf mass divided by the

leaf mass before drying. We calculated specific root length

(SRL; m�g�1) for each individual plant by dividing the total

root length by the dry rootmass.

Partitioning of intraspecific variability

All analyses were conducted in R (v 3.2.3; R Foundation

for Statistical Computing, Vienna, AT), with packages

listed where appropriate. To determine the contribution of

intraspecific trait variation to total trait variation both

within our study communities and among communities,

we used previously published variance partitioning equa-

tions (de Bello et al. 2011; Siefert et al. 2015). For each

trait at each site, we calculated within-community

intraspecific trait variability (wITV), the relative contribu-

tion of intraspecific trait variability to total within-site trait

variability. Also, for each trait across all sites, we calculated

among-community intraspecific trait variability (aITV),

the log ratio of variance due to intraspecific trait variability
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to variance due to species turnover across sites. We report

wITV as a proportion between 0 and 1, where higher val-

ues indicate larger contribution of intraspecific variability

to the total, and we report aITV as the natural logarithm of

a ratio, where a positive number indicates that intraspecific

variability is relatively more important than species turn-

over across sites.We used ANOVA to compare wITV values

among traits and sites, and we also compared the wITV

and aITV values to the global means reported by Siefert

et al. (2015). Unfortunately, nomean variability values for

root traits were reported in themeta-analysis.

Predictions of species abundances

We used a model that mathematically represents assembly

of local communities from a regional species pool through

the selective processes of environmental filtering and

niche differentiation. Themodel ismodified from the Trait-

space model (Laughlin et al. 2012). The model predicts

species abundances at locations with differing environ-

mental conditions, using species traits to connect species

identities with environmental conditions. The Traitspace

model captures two key processes that contribute to pat-

terns of species abundance among local communities.

First, in order for a species from the regional species pool to

be able to establish at a particular site, it must possess traits

that enable it to tolerate the environmental conditions at

that site. Species with traits conferring higher fitness given

a particular set of environmental conditions should have

higher abundance. Second, in addition to these relative fit-

ness differences, niche differentiation among species

resulting from interactions among individuals is an addi-

tional filter that determines the species composition and

abundance distribution at a given site. Biotic processes

might contribute to increased trait dispersion both within

and among species.

We fit Traitspace models with two types of priors: unin-

formative priors and priors that used each species’ global

range size as a prior estimate of its local abundance. Across

both types of prior, we fit models with two structures of

trait variance: one in which trait variance, and thus the

strength of disruptive selection within species, was

assumed constant across sites, and one in which it was

assumed to vary across sites. We expected that the model

allowing trait variance to differ among sites would lead to

improved predictions of species abundance, because the

niche breadths of species tend to decrease with increasing

elevation (Stevens 1992). We fit these four variants of the

Traitspace model to all 31 possible subsets of the five plant

traits we measured, for a total of 124 model fits (Table 1

summarizes the different models that were fit). For each of

these model fits, we output predictions of relative species

abundances at each of the study sites and compared them

to the observed abundances.

We followed a multi-step process to fit the Traitspace

model to the data; see Appendix S2 for a full description of

this process. First, we fit trait-by-environment regressions

using trait and environmental data from each of the 14

observational sites. For each trait, we combined all the

individual measurements, without information on species,

and fit a weighted multiple quadratic regression model

with environmental variables as predictors. Next, we cal-

culated the trait distribution, parameterized as a multivari-

ate normal distribution, for each species across all sites

where it occurred. Next, we sampled from the trait distri-

bution at each site, independent of species, with the appro-

priate variance structure for each Traitspace model fit.

Next, we used the sampled trait data and the previously fit

trait distributions for each species to calculate the likeli-

hood, or the probability, of each species being present

given each trait sample. In a subset of the models, we used

a flat discrete prior, and in another subset of the models,

we scaled the prior for each species by the global range size

of that species, estimated from publicly available global

occurrence data (see Appendix S3 for how these range

sizes were estimated). Finally, we integrated out the traits

using Monte Carlo integration to get the posterior predic-

tions of relative species abundances.

We fit the models using all possible subsets of these five

traits: plant height, leaf mass:area ratio (LMA; the ratio of

dry mass to scanned leaf area), SRL (ratio of root length to

dry root mass), leaf dry matter content (LDMC; the ratio of

dry leaf mass to wet leaf mass) and leaf tissue N:P ratio. We

assessed model predictive accuracy using root mean

squared error (RMSE). We compared the accuracy of

model predictions with all the possible subsets of traits,

with and without variation in niche differentiation pro-

cesses across the landscape, and with and without the

incorporation of prior information on species range sizes

(Table 1). In addition, we compared all these model

Table 1. Summary of factors that varied across model fits.

Factor Levels Used in Different Model Fits

Prior Information Uninformative prior Prior for each species proportional to its global range size

Trait Variance Variance of each trait assumed constant across sites Variance of each trait assumed to vary across site

Traits Used All 31 possible subsets of the following traits: LMA, SRL, height, LDMC, leaf N:P ratio
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predictions to a null model for which all 46 species in the

data set were assumed to have equal relative abundances

at each site. R files containing functions (Appendix S4)

and scripts (Appendix S5) to reproduce our analyses are

included as a supplement.

Results

Local plant communities

The plant communities at the 14 sites varied in total rich-

ness along the elevational gradient. The lowest richness

was 13 species at the lowest elevation site (2480 m; med-

ian 5.0 species�quadrat�1), and peak richness was 34 spe-

cies at 2806 m a.s.l. (median 10.5 species�quadrat�1),

including species for which we did not measure functional

traits. Median site-level richness across elevations was 24.5

species, and median quadrat-level richness was 10.75 spe-

cies per quadrat. The ten most common species across all

sites and their elevational ranges are given in Table 2. Both

leaf and root traits, including LMA SRL and LDMC, tended

to vary independently of one another both among species

within a site and among sites (Fig. 1a). However, variation

in plant height was somewhat more constrained (Fig. 1b).

In general, species co-occurring at a site tended to overlap

in trait space, especially in LMA and SRL.

Partitioning of intraspecific variability

Within sites, intraspecific trait variation (wITV) varied

widely but unpredictably for above-ground traits, with

proportions of within-species variation in individual traits

at individual sites ranging from under 0.2 to over 0.95

(Fig. 2). The magnitude of intraspecific variation across

sites was unrelated to any climatic variable. Variation in

SRL within sites was uniformly dominated by within-spe-

cies variation, with proportions ranging from 0.67 to 0.97

(Fig. 3). Among sites, SRL, leaf N:P ratio and LDMC had

positive aITV values, indicating the variation in functional

traits within species among sites was greater than the vari-

ation caused by turnover of species among sites. In con-

trast, LMA, root N:P ratio and plant height had negative

aITV values (Fig. 2), indicating that species turnover

among sites made up the majority of variation in LMA and

plant height among sites, with intraspecific variation mak-

ing up a smaller proportion.

We also compared the observed wITV and aITV to val-

ues recorded in a recent global meta-analysis and found

that the values for intraspecific trait variability in our

study were generally higher than the global means in the

Table 2. The ten most common species in the study plots and their eleva-

tional ranges.

Species Elevational Range (m a.s.l.)

Minimum Maximum

Poa pratensis 2769 3200

Festuca thurberi 2740 2943

Bromopsis inermis 2740 3392

Helianthella quinquenervis 2769 3392

Erigeron speciosus 2740 3392

Potentilla gracilis 2740 3460

Lathyrus leucanthus 2740 3335

Artemisia tridentata 2480 2806

Thalictrum fendleri 2806 3392

Ligusticum porteri 2769 3460

Fig. 1. Individual measurements of LMA and SRL (a) and LDMC and height

(b). In each panel, measurements are coloured by site elevation above sea

level. For each species, an ellipse is drawn around the central 95% mass of

the multivariate normal distribution of the two traits. Ellipses are coloured

by the mean elevation of each species. [Colour figure can be viewed at

wileyonlinelibrary.com]
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meta-analysis (Siefert et al. 2015). The global mean wITV

values for LMA, plant height and LDMC were all approxi-

mately 0.3 (0.29, 0.30, and 0.29 respectively), albeit with

high variability among studies. In contrast, the mean

wITV values we observed were >0.4 for all traits, indicat-

ing that the role of within-site intraspecific variability of

each trait was higher than the global mean in our study

region. The three mean aITV values were all negative in

the global meta-analysis and ranged between �0.3 and

�0.9 (�0.86, �0.33 and �0.65, respectively), although

none significantly differed from zero. In our study, the

aITV values for LMA and plant height were more negative

than the global mean, but the aITV value for LDMC was

positive. These results indicate that within sites in our sys-

tem, species vary more in their LMA and height than the

global average, and that among sites differences in LDMC

are driven by individual-level variation to a greater degree

than is typical globally.

Trait-by-environment regressions

Overall, we found that the predictive power of trait–envi-
ronmental relationships was relatively weak (Fig. 3; model

fit statistics in Appendix S6; note R2 values). Across all

sites, plant height had a unimodal relationship with both

summer precipitation and summer temperature, while leaf

mass:area ratio was highest at sites with high temperature

and low precipitation (low elevation). LDMCwas lowest at

sites with intermediate temperature and precipitation

(mid-elevation), and leaf N:P ratio had a moderate peak at

intermediate sites. As SRL varied so widely within sites,

there were no significant across-site relationships with cli-

matic variables.

Predictions of species abundances

The performance of all models, whether incorporating

variation in functional diversity among sites or not,

whether incorporating information about global range

sizes, and regardless of which traits were included, was

remarkably poor (Fig. 4). Model performance was not

affected by the assumption of variable trait variances across

sites or by the incorporation of prior information (Fig. 4).

In fact, essentially all models performedworse at predicting

relative species abundances than a null model assuming

equal species abundances across all sites: the RMSE of the

null model was 0.054, and the lowest RMSE across all 124

model fits was also 0.054. The poor performance of the 124

variants of the trait-based model indicates that relative

abundance distributions of species in the study region are

not driven by the relationship between environment and

species traits, at least for the traits and environmental con-

ditions that we considered (Appendix S7).

In general, the models under-predicted the abundance

of most of the common species and predicted that some

species that were present but rare would have a relative

abundance approaching zero. In addition, the predictions

of species abundance distributions were much more even

than those we observed: median Simpson’s evenness

across sites was 0.15, but across all model runs median

evenness across sites was 0.49 (between 0.33 and 0.87 in

95% of runs). Across all sites, the models tended to under-

predict the abundances of exotic species, including Bromop-

sis inermis and Taraxacum officinale. The models over-pre-

dicted the abundances of some species that were locally

common at one or two sites, but not found elsewhere,

including Poa spp., Symphoricarpos rotundifolius, Geum rossii

and Chrysothamnus viscidiflorus. Within sites where they

were present, the local abundance of grass species, includ-

ing Poa and Festuca spp., tended to be underestimated.

Discussion

Trait-based ecology has made great progress in accounting

for patterns in nature, despite largely failing to account for

the obvious fact that traits vary among individuals within

species, and that this variation matters for how species

interact with their environment and with each other.

Fig. 2. Bar plots of intraspecific trait variability. (a) Bar plot of the

proportion of intraspecific variability (wITV) at each site for each of the

six traits; error bars represent SEM. A value of 0 would indicate no

intraspecific variability. (b) For each trait, the log ratio of variation

among sites due to intraspecific variability to variation among sites due

to species turnover (aITV). A positive number means that intraspecific

variability contributes more than species turnover, and 0 would mean

the effects are of the same magnitude. [Colour figure can be viewed at

wileyonlinelibrary.com]
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Fig. 3. Trait-by-environment scatterplots showing, from top to bottom, leaf mass:area ratio, SRL, plant height, LDMC and leaf N:P ratio plotted against

mean summer temperature (left panels; a, c, e, g and i) and total summer precipitation (right panels; b, d, f, h and j). Each point represents a trait value for

an individual plant at a particular site, ignoring species identity. Quadratic abundance-weighted regression fits are plotted, along with a band representing

the SE of the fits. [Colour figure can be viewed at wileyonlinelibrary.com]
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Here, we sought to link trait variation both among and

within species to the assembly of montane plant commu-

nities. Our results suggest that different plant traits are

involved with different assembly processes occurring

simultaneously. For instance, high ITV below-ground may

suggest that processes such as soil resource partitioning are

the dominant driver of variation in root traits, whereas leaf

traits were less variable within species at each site and may

be influencedmore by environmental filtering. The predic-

tive model showed that the functional traits we measured

do not explain the distributions of species across sites

(Appendix S7). In addition, incorporating functional diver-

sity to account for niche spread did not improve predictive

accuracy at all (Fig. 4). Overall, the poor performance of

traits in predicting species relative abundances indicates

that more than just trait-based filtering from the regional

species pool determines which species establish at a site

and how abundant they become. Observed species distri-

butions were much less even than modelled distributions,

indicating that the model does not adequately account for

species dominance patterns that arise during local

community assembly. The high level of intraspecific trait

variability in our study system is a plausible explanation

for the lack of predictive power of our models. In addition,

a variety of other processes may be more important than

trait-based filtering. Among these processes may be histori-

cal and biogeographic effects, effects of spatial scale, soil

resource heterogeneity or the fact that these functional

traits may not capture the processes leading to community

assembly patterns in the study region.

Intraspecific variability

It is notable that the intraspecific variation in root traits

within sites was greater than the intraspecific variation in

either leaf traits or plant height. This may indicate that

there is higher competition among individuals, regardless

of species, below-ground that is driving niche differentia-

tion (Westoby & Wright 2006), or large differences in soil

resource availability (Hutchings et al. 2003). Further, the

high variability in root traits may mean that root traits are

not very useful for predicting species abundances at a given

site, because most of the variation is within species. It is

also possible that root traits vary at different spatial scales

Fig. 4. Root mean squared errors (RMSE) of all model fits. Within each panel, RMSE is plotted against the number of traits used to fit the model. The top

two panels (a and b) show RMSE of models with a single trait variance value used across sites, and the bottom two panels (c and d) show RMSE of models

in which trait variance was allowed to vary across sites. The left two panels (a and c) show RMSE of models with uninformative priors, and the right two

panels (b and d) show RMSE of models with informative priors based on species global range sizes.
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and in response to different environmental drivers, neither

of which are well captured by this study. Individual plants

exhibit morphological plasticity in roots in response to

environmental change, presumably to achieve optimal

resource co-limitation (Hutchings et al. 2003; Freschet

et al. 2015). Adjustments in SRL and root biomass alloca-

tion may explain most of the community-level variation in

root morphology that we recorded.

In comparison to the values from the global meta-analy-

sis of Siefert et al. (2015), the wITV values from the study

region were higher, while the aITV values for LMA and

height were comparable. This shows that LDMC and SRL

are explained more by individual variability than by spe-

cies turnover across sites, but LMA and height are

explained more by species turnover. Taken together, these

results may indicate that LMA, root N:P ratio and plant

height determine which species from the regional species

pool pass through environmental filters and become estab-

lished at each site, but that SRL may be involved with

interactions among conspecific individuals that tend to

increase the niche breadth of a species. The correlation of

LMA and height with species turnover across sites appears

to suggest that those traits would be the most useful for

predicting species presence across the study sites. However,

LMA and height are not useful for predicting relative

abundance due to high intraspecific variability within sites,

which helps explain the poor model performance we

observed.

Our results lend support to the calls for an increased

appreciation of individual trait variability in ecology (Bol-

nick et al. 2011; Violle et al. 2012; Rosindell et al. 2015).

They suggest that intraspecific variation is a crucial driver

of global change response, in agreement with previous

work (Siefert et al. 2014; Moran et al. 2016). The high

intraspecific trait variability in our study system would

suggest that multiple species at a given site could be func-

tionally equivalent (Hubbell 2005). The high degree of

overlap in trait values among species made it difficult to

predict which species should achieve the highest abun-

dance at a given site from their traits alone. Our models

failed to predict species dominance patterns: predicted dis-

tributions of species abundance were relatively even, but

in reality one or a few species dominated at each site. We

discuss potential reasons for this mismatch below.

Mismatch in temporal and spatial scales

One potential reason that our models failed to predict spe-

cies relative abundance in local communities is that differ-

ences in the relative abundances of species among sites

separated by hundreds of meters of elevation may be con-

trolled by historical and biogeographic factors rather than

deterministic ecological processes. These contingent

historical events have interfered with the deterministic

outcomes of filtering and niche differentiation. There may

be dispersal barriers that prevent plants with appropriate

traits from reaching optimal sites (Clark et al. 2002), per-

haps due to topographic barriers in the mountainous study

region (Engler et al. 2009). In addition, species relative

abundance may shift from year to year due to temporal

stochasticity (Alonso et al. 2006). Another potential expla-

nation for the mismatch between traits and environment

is that we measured species composition at a single time

point and attempted to correlate it with static measures of

climate (mean annual temperature and precipitation).

However, plant species relative abundance may respond

more sensitively to climatic fluctuations at a rapid time

scale (Fukami & Nakajima 2011), leading to year-by-year

turnover in dominant species identity (Allan et al. 2011).

Furthermore, coarse-scale measurements of climatic fac-

tors may not adequately account for heterogeneity in

microclimate and soil characteristics, either of which may

act as a strong determinant of relative abundance at the

plot scale (Levin 1992). Such small-scale variation in cli-

mate and soil properties may be an important cause of the

intraspecific variation we recorded.

Mismatch between traits and community assembly

processes

The trait-based models may have performed poorly

because we failed to measure the plant traits or environ-

mental factors that ultimately drive community assembly,

assuming that community assembly is not entirely stochas-

tic (Wills et al. 1997). Interestingly, our models tended to

predict relative abundance distributions that were much

more even than those we observed, and to predict the

presence of many species that did not occur at particular

study sites (Appendix S7). The under-prediction of the

abundance of common species may indicate that the mod-

els do not capture processes that generate uneven abun-

dance distributions. Furthermore, the assumption that

probability of presence at a site corresponds to relative

abundance within a community, common to Traitspace

and other trait-based community models (e.g. Maxent;

Shipley et al. 2006), often leads to under-prediction of

common species. In addition, empirical studies have often

failed to detect significant functional differences among

dominant and minor species (Walker et al. 1999), indicat-

ing that neutral processes may be more important for gen-

erating relative abundance distributions (Hubbell 2005).

Another potential explanation for the low predictive

power of themodels is that the trait–environment relation-

ship was relatively weak (Appendix S6; note R2 values), at

least for the traits we selected. Given the relatively high

overlap of co-occurring species in trait space, the signature
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of filtering may not be detectable; this effect may have

been exacerbated through high levels of intraspecific varia-

tion within sites. In addition, the predictive power of mod-

els including more traits was lower, possibly because fewer

individuals per species had measurements for all of the

traits. Using fewer individuals reduced the information

used to generate the multivariate density estimations,

which may have led to worse model performance. Finally,

our approach did not directly model competitive interac-

tions among species. Although we indirectly accounted for

the effect of limiting similarity (Abrams 1983) on commu-

nity assembly by modelling trait variance, our model

would not have detected a strong trait-based competitive

hierarchy (HilleRisLambers et al. 2012). Future trait-based

models of environmental filtering should explicitly include

both types of interactions to capture more of the commu-

nity assembly process.

Conclusion

In order for trait-based ecology to fulfill its early promises

(McGill et al. 2006), traits must be used to predict, rather

than solely describe patterns in an ad hoc manner (Laugh-

lin et al. 2012; Violle et al. 2014). However, because trait

distributions reflect the outcome of selective processes act-

ing at the level of the individual organism, they may not

be good predictors of species abundances within communi-

ties, especially when trait plasticity or variation is high

(Messier et al. 2010; Siefert et al. 2015). We recommend

that future model development focus on accounting for

individual variation and plasticity and their consequences

for community assembly. In addition, we suggest that

researchers measure root traits that capture trade-offs in

resource acquisition below-ground, because what plants

do below-ground can obviously influence interactions,

and ultimately their relative abundance, above-ground.
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