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Abstract
Aim: Ant communities are believed to be structured by competition, with dominant 
species competitively excluding subordinates (the dominance–impoverishment rule). 
However, a high number of seemingly similar species coexist, possibly due to inter-
specific trade-offs. Here, we examine the evidence for the dominance–impoverish-
ment rule across a broad latitudinal gradient and explore whether trade-offs explain 
coexistence within and among ant communities.
Location: 40 sites in 19 countries across Europe, western North America and north-
ern South America.
Taxon: Formicidae.
Methods: We conducted 2-hr baiting experiments at each site. Three dominance 
scores were calculated for each species at each site where it occurred. We then ex-
amined the relationship between ant dominance and diversity and tested for the gen-
erality of three trade-offs (dominance–discovery, dominance–thermal tolerance and 
dominance–generalism) within and among ant communities along with the possible 
effects of environmental variables on these trade-offs.
Results: We found no support for the dominance–impoverishment rule. Instead, 
overall species richness at baits was positively correlated with the number of domi-
nant species and exhibited a unimodal relationship with the relative abundance of 
dominant ants. Moreover, we found little consistent evidence for the three interspe-
cific trade-offs.
Main conclusion: Although total species richness at baits is positively correlated with 
species richness of dominant species and, to a point, increasing worker numbers of 
dominants, trade-offs among species do not appear to shape broad-scale patterns of 
coexistence among ants. Species richness declines only when the numbers of domi-
nant workers are very high. Together, these results suggest that while trade-offs and 
the dominance–impoverishment rule might promote coexistence or shape ant com-
munities in some locations, the evidence for their being general across communities 
is scant.
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1  | INTRODUC TION

Interactions among species, especially competitive interactions, are 
thought to be key to shaping the structure and dynamics of commu-
nities (Elton, 1946; Hölldobler & Wilson, 1990; Tilman, 1994). In ants, 
as in other organisms, competitively dominant species are thought 
to reduce the richness and abundance of subordinate species 
(Andersen,  1992; Duralia & Reader,  1993; Keddy,  1990), resulting 
in the ‘dominance–impoverishment rule’ (Hölldobler & Wilson, 1990; 
Campbell, Fellowes, & Cook, 2015). The rule predicts that species 
diversity should decrease linearly as the number or abundance of 
dominant species increases (Andersen & Patel, 1994; Hölldobler & 
Wilson, 1990).

However, evidence for the dominance–impoverishment rule is 
mixed. The diversity of ants within a community has sometimes even 
been found to be higher when dominant species are present (Arnan 
et al., 2018) or to show a unimodal relationship as the relative abun-
dance of dominant species increases (Andersen, 1992; Parr, Sinclair, 
Andersen, Gaston, & Chown, 2005). It is possible that the relation-
ship between ant dominance and diversity may depend on multiple 
factors, such as whether the dominant species are native or inva-
sive or climatic conditions (Arnan et al., 2018). One mechanism that 
might allow subordinate species to persist even in the presence of 
dominant species is the existence of trade-offs (Elton, 1946; Kneitel 
& Chase, 2004; Tilman, 1994).

Trade-offs have been well studied and documented in plants 
(Huot, Yao, Montgomery, & He,  2014; Leishman,  2001; Muller-
Landau,  2010; Petry, Kandlikar, Kraft, Godoy, & Levine,  2018; 
Tilman,  1994) but also in other taxa, including birds (Ebneter, 
Pick, & Tschirren, 2016; Podlaszczuk et al., 2016), marine sponges 
(Wulff, 2005) and ants (Cerdá, Retana, & Cros, 1998; Davidson, 1998; 
van Oudenhove, Cerdá, & Bernstein, 2018). However, it is not yet 
clear if and when trade-offs exist in a way that allows subordinate 
species to coexist with dominants (Adler, LeBrun, & Feener, 2007; 
Davidson,  1998; Feener,  1981, 2000; Holway,  1999; Human & 
Gordon,  1996; LeBrun,  2005; Lebrun & Feener,  2007; Morrison, 
Kawazoe, Guerra, & Gilbert,  2000; Parr & Gibb,  2012; Stuble, 
Rodriguez-Cabal, et al., 2013). Some studies suggest that trade-offs 
may depend on climate and are more pronounced at sites with more 
extreme temperatures (Bestelmeyer,  2000; Cerdá Retana, & Cros, 
1997, 1998; Lessard, Dunn, & Sanders,  2009). However, studies 
of trade-offs in ants have typically been conducted at single sites 
(Cerdá, Arnan, & Retana, 2013; Cerdá, Retana, & Cros, 1997; Stuble, 
Rodriguez-Cabal, et al., 2013), limiting our ability to detect whether 
factors such as climate mediate the existence, strength or resulting 
consequences of trade-offs in ant communities (Chesson, 2000).

Here, we conducted baiting experiments at 40 sites across 19 
countries to test for the existence of the dominance–impoverish-
ment rule across ant communities, explore whether commonly pro-
posed trade-offs explain ant species coexistence among and within 
sites, and evaluate how abiotic conditions influence these trade-offs. 
We focus on three key trade-offs previously proposed to structure 
ant communities:

1.	 The dominance–discovery trade-off predicts that the ants fastest 
at discovering resources are the worst at excluding competitors 
(Adler et  al.,  2007). Analogous trade-offs have been found 
in plants (Cadotte,  2007; Hastings,  1980), dogs (Kemp,  2005), 
mammalian carnivores (Hunter, Durant, & Caro, 2007) and finches 
(Herrel, Podos, Vanhooydonck, & Hendry,  2009) and could in 
ants be due to limited resources being allocated towards dif-
ferent foraging strategies (van Oudenhove et  al.,  2018).

2.	 The dominance–thermal tolerance trade-off predicts that dominant 
and subordinate species forage under different temperature con-
ditions, allowing them to coexist under environmental fluctuations 
or as the result of occupying different temporal niches (Armstrong 
& McGehee,  1976; Chesson & Huntly,  1997; Loreau,  1992). 
Analogous trade-offs have been found in fish (Clark, Sandblom, 
Cox, Hinch & Farrell, 2008) and copepods (Willet,  2010). 
Mechanisms behind this trade-off are unclear but may be due to 
competitor or predator avoidance by subordinate species (Nonacs 
& Dill,  1990), heat-avoidance (Bacigalupe, Rezende, Kenagy, & 
Bozinovic,  2003; Stuble, Pelini, et al., 2013) or dominant spe-
cies trading off heat tolerance for competitive dominance (Roze, 
Christen, Amerand, & Claireaux, 2013).

3.	 The dominance–generalist trade-off predicts that dominant species 
may be more specialized on particular resources than subordi-
nates, allowing subordinate species to coexist by better capitaliz-
ing on a wider variety of resources (Abrams, 2002; Chesson, 1990, 
2000; MacArthur,  1970). This theory is derived from classical 
theory of resource selection developed by Rosenzweig (1974), 
which has been widely studied in birds (Dhondt, 2012; Pimm & 
Pimm, 1982). The mechanisms behind this trade-off are unclear, 
but could be due to physiological adaptations in dominant ants 
(Davidson, 1997) or may reflect the outcome of competitive inter-
actions between species, resulting in subordinates shifting their 
resource use (Sanders & Gordon, 2003).

2  | MATERIAL S AND METHODS

2.1 | Study sites and sampling

We conducted baiting experiments at 40 sites of 20 × 20 m (each 
consisting of four 5  ×  5  m subplots) during the daytime between 
June 29th and November 11th 2016: 20 in Spain, seven in France, 
five in Germany, three in Denmark, four in the United States and 
one in French Guiana (Figure 1). Sites were in areas with known ant 
activity or where ant fieldwork had previously been carried out and 
spanned a range of ecological biomes, including temperate forests, 
deserts and xeric shrublands and rainforests. Sites were separated 
by at least 100 m and we had local permission to work at each site.

We designed the experiments similarly to classic experiments 
in ant ecology (Andersen,  1992; Cerdá et  al.,  1997; Fellers,  1987; 
Perfecto,  1994; Sanders & Gordon,  2003; Savolainen & 
Vepsalainen, 1988; Savolainen, Vepsäläinen, & Wuorenrinne, 1989). 
Specifically, we chose five different resources (canned tuna in water, 
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untoasted sesame seeds, 20% sugar water solution, 1% saltwa-
ter solution and tap water) to attract diverse species at each site. 
Approximately one teaspoon of solid resources and 2.5 cm diame-
ter cotton balls soaked in the liquid resources were placed on indi-
vidual ~6 cm diameter plastic discs in the middle of each subplot in 
a pentagonal shape, equidistant from the plot boundaries and ap-
proximately 20 cm from each other. In all, 20 baits were deployed at 
each site: One bait per bait type (5) per subplot (4). See Supporting 
Information for an illustration of the set-up (Figure  S1). After de-
ploying the baits, the numbers and identities of ants present were 
recorded after 5, 15, 30, 60, 90 and 120 min. Ground temperatures 
were measured during each observation using a handheld infrared 
thermometer (Raytek Raynger ST).

2.2 | Environmental data

We extracted four environmental variables from online databases for 
each site. Mean annual temperature (MAT) and annual precipitation 
(AP) data were extracted from the 1970 to 2000 average WorldClim2 
dataset at a resolution of 30 arc seconds (Fick & Hijmans,  2017). 
Both temperature and precipitation have previously been identi-
fied as important determinants of ant distributions (Fitzpatrick 
et al., 2011; Kluge, Kessler, & Dunn, 2006; Lessard et al., 2009). In 
addition, we extracted monthly normalized difference vegetation 

index (NDVI) values for each site during the month when sampling 
occurred from Moderate-Resolution Imaging Spectroradiometer 
MOD17, 30-arcsec data (Didan, 2015). NDVI is often used as a meas-
ure of productivity (Sanders, Lessard, Fitzpatrick, & Dunn,  2007), 
which is hypothesized to be correlated with larger population sizes 
and perhaps increased competition. Finally, we estimated actual 
evapotranspiration (AET) using Turc's formula (Kluge et  al.,  2006; 
Turc,  1954; Sanders et al., 2009), where AET  =  P/[0.9  +  (P/L)2]1/2 
with L = 300 + 25T + 0.05T3, P = annual precipitation and T = an-
nual mean temperature. AET is the quantity of water removed from 
a surface due to the processes of evaporation and transpiration and 
has been shown to be an important correlate of diversity at broad 
spatial scales (Currie et al., 2004).

A correlation matrix between the four environmental vari-
ables showed a significant correlation between MAT and AP (0.58, 
p < 0.0001), NDVI (−0.49, p < 0.0001) and AET (0.72, p < 0.001), 
and AP and AET (0.98, p < 0.0001). However, except for the cor-
relation between AP and AET, all correlations were nonlinear 
(Figure S2).

2.3 | Dominance

Ant dominance has been defined in multiple ways (Cerdá 
et al., 2013; Parr & Gibb, 2012), with different dominance metrics 

F I G U R E  1   Global map of the 40 study sites for ant (Formicidae) baiting experiments included in this study (20 in Spain [ES1-5], seven in 
France [FR1-2], five in Germany [DE1-2], three in Denmark [DK], four in the United States [CA and CO] and one in French Guiana [FG])) with 
cut-outs for areas where sites were too close together to distinguish. Colours indicate the number of species recorded at each site, ranging 
from 0 to 11, with a total of 72 species in 27 genera. Background colours indicate the major biomes at each sites. Most experiments were 
carried out in areas of either Mediterranean or Temperate forests and scrub [Colour figure can be viewed at wileyonlinelibrary.com]
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reflecting different ecological phenomena (see Stuble, Juric, Cerdá, 
& Sanders, 2017). In this study, we only assess ecological dominance, 
which we calculated in three different ways based on the numerical 
abundance of workers at baits (one metric) and the monopolization 
of baits (two separate metrics. Andersen, 1992; Cerdá et al., 1997; 
Parr et  al.,  2005). Numerical abundance was calculated following 
a 6-point scale: 1, 1 ant; 2, 2–5 ants; 3, 6–10 ants; 4, 11–20 ants; 
5, 21–49 ants and 6, 50+ ants (as in Andersen,  1997a). All three 
dominance metrics were calculated for each ant species at each site 
where it occurred. Monopolization was calculated as the number 
of observations where baits were monopolized, and we considered 
baits to have been monopolized if one species was present with 20 
or more individuals simultaneously. We assessed two different mo-
nopolization metrics: (a) the proportion of available baits monopo-
lized per subplot (5 baits × 6 time periods = 30 available) and (b) the 
proportion of discovered baits monopolized (as in Parr et al., 2005). 
This differs slightly from other ways of measuring dominance, where 
a species only dominates a bait if it is the only species on a bait by 
the end of an experiment (see Stuble et al., 2017), by allowing for 
situations where different species could have been considered to 
monopolize the same bait, but at different times.

We used Spearman rank correlation with a 0.70 threshold 
to test for correlation between the dominance metrics (Hinkle, 
Wiersma, & Jurs,  2003). Monopolization of discovered baits was 
highly correlated with monopolization of all possible baits (r = 0.98, 
p  <  0.001) and mean abundance score (r  =  0.71, p  <  0.001). 
Monopolization of all possible baits was also highly correlated with 
mean abundance score (r  =  0.70, p  <  0.001). Therefore, we used 
monopolization of discovered baits as representative of dominance 
in all further analyses.

Finally, we classified species as dominant or subordinate at each 
site based on mean monopolization score of discovered baits. Species 
with dominance scores higher than the upper 95% confidence interval 
of the mean dominance scores of all ants combined across all sites were 
considered to be dominant. All other species were classified as subor-
dinate. The mean monopolization percentage of discovered baits (the 
number of observations where a species monopolized a bait divided by 
the total number of times that species was observed in that plot) was 
8.6 ± 2.44% 95% CI, and dominant species thus had a monopolization 
score above 11.04%. Site-level dominance calculations allowed a spe-
cies to be dominant at one site but subordinate at another.

2.4 | Discovery ability

Discovery ability was assessed based on the number of times a 
species was first to occur at a bait (Lebrun & Feener, 2007; Parr & 
Gibb, 2012). Species that occurred first were assigned ‘1’, and all sub-
sequent species to arrive were assigned ‘0’. If two or more species 
arrived at a bait at the same time, they were both assigned ‘1’. We 
then divided the total number of baits a species discovered first by 
the total number of baits that the species discovered (a maximum of 
20 if a species discovered all baits) to determine its discovery ability. 

While this allowed us to assess the discovery ability of species that 
were actively foraging during the time of the experiment, it did not 
account for any potential differences in species abundances or their 
peak foraging times.

2.5 | Thermal activity range

For each species at each plot, we calculated the ground temperature 
range during which that species was foraging, and use this as an ap-
proximation of the species’ thermal activity range. While not a re-
flection of a species’ thermal tolerance or fundamental niche, this is 
a commonly used method to determine whether subordinate species 
have the ability to persist because they forage under broader tem-
perature ranges than dominant species (Bestelmeyer, 2000; Cerdá, 
2001; Cerdá, Angulo, Boulay, & Lenoir, 2009).

2.6 | Resource use

We calculated resource generalism for each species at a site using 
Hurlbert's probability of an interspecific encounter index (PIE): 
PIE =

N

N−1
×1.0−

∑S

i=1
(pi)

2, where S is the number of bait types, pi is 
the proportion of workers found on bait i and N is the total number 
of workers observed (Ellison & Gotelli, 2009; Gotelli & Graves, 1996; 
Hurlbert,  1971). PIE ranges from 0 to 1, where a value close to 0 
indicates that the species is a resource specialist and a value close 
to 1 indicates that the species uses multiple resources equally and 
is a generalist. Species that were only present at a site with a single 
worker were excluded from the resource use analysis.

2.7 | Is there evidence for the dominance–
impoverishment rule?

Species richness or abundance of dominant ants has been shown to 
be correlated with total species richness in different ways, depending 
on how dominance is measured and whether dominant species are na-
tive or non-native (e.g. unimodal; Andersen, 1992; Arnan et al., 2018; 
Parr, 2008; Parr et al., 2005, logarithmic; Baccaro, De Souza, Franklin, 
Landeiro, & Magnusson, 2012, negative linear; Andersen & Patel, 1994; 
Morrison, 1996). To test whether there is a negative linear or unimodal 
relationship between apparent species richness and the abundance or 
number of dominant species at baits across multiple sites, we carried 
out two separate mixed effects linear and second-order polynomial 
models with the total number of observed species at each site as the 
dependent variable in both models, either the number of dominant 
species or the abundance of dominant species as the independent 
variable, and locality as a random effect to account for possible spa-
tial autocorrelation in both models. Model performance was evaluated 
using the AIC score and we used variance inflation factors (VIF) to test 
for multicollinearity (Borenstein, Hedges, Higgins, & Rothstein, 2009; 
Craney & Surles, 2002). We acknowledge that actual species diversity 
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at sites may differ from the observed diversity at baits, but are in this 
study only considering interacting species.

2.8 | Do trade-offs promote coexistence within and 
among ant communities?

To test for the existence of the dominance–discovery, dominance–
thermal tolerance and dominance–generalist trade-offs across sites, 
we used generalized linear mixed models fit by maximum likelihood 
(Adaptive Gauss-Hermite Quadrature, with 25 iterations) with mo-
nopolization as the response variable, discovery ability, temperature 
range and resource generalism as fixed effect and locality as a ran-
dom effect. As before, we tested for multicollinearity between the 
three independent variables using VIF. In the analysis, each point is a 
specific species at a specific site. A significantly negative relationship 
between dominance and discovery ability would provide evidence 
for the dominance–discovery trade-off, with dominant species being 
slower to discover resources than subordinate species. A significantly 
negative relationship between dominance and the activity tempera-
ture range would provide evidence for the dominance–thermal tol-
erance trade-off, with subordinate species foraging over a broader 
range of temperatures than dominant species. A significant negative 
relationship between resource generalism (measured as PIE) and 
dominance would provide evidence for the dominance–generalism 
trade-off, with dominant species being more specialized in their re-
source use than subordinate species. To determine if there was a 
significant difference between dominant and subordinate species in 
discovery ability, thermal tolerance and specialization, we compared 
the mean values of each variable for species classified as dominant 
and subordinate using Student's t tests.

To test for the effect of environmental variables on the presence 
of trade-offs in ant communities, we conducted Spearman rank cor-
relations between dominance and discovery, dominance and thermal 
tolerance and dominance and generalism for each site where three or 
more species were present. We then use the correlation coefficients 
(r-values) as an effect size index (Borenstein et al., 2009) to explore 
the effect of mean annual temperature (MAT), annual precipitation 
(AP), actual evapotranspiration (AET) and monthly NDVI on the 
trade-offs using a linear mixed model. Because of high correlation 
between some of the climatic variables, we first ran a model con-
taining all variables and evaluated this using VIF. We then ran a sec-
ond model in which we dropped the variable with the highest score 
(AET). This did not change the performance of the model (Table S1). 
Finally, we corrected for multiple comparisons by Bonferroni correc-
tion (Bonferroni, 1935). A significant positive effect would suggest 
that a factor strengthens the tested trade-off.

2.9 | Data and analyses

All analyses were conducted in ‘R’ (R Core Team, 2018) using the 
packages ‘raster’ (Hijmans (2019), ‘lme4’ (Bates, Maechler, Bolker, 

& Walker, 2015), ‘jtools’ (Long, 2019), ‘car’ (Fox & Weisberg, 2019) 
and ‘MASS’ (Venables & Ripley,  2002). Figures were cre-
ated using the R packages ‘ggplot2’ (Wickham,  2016), ‘ggpubr’ 
(Kassambara, 2019) and ‘cowplot’ (Wilke, 2019) and the map was 
created using ‘ArcGIS’ (ESRI, 2010). All data used in this study have 
been made publicly available through Sheard et al. 2020. Code has 
been made freely available through Github (https://github.com/
JKShe​ard/Trade​offs.git). An overview of all analyses is shown in 
Table S1.

3  | RESULTS

Across all sites, we observed 72 species in 27 genera. The number 
of species present at the baits at each site ranged from zero at one 
site each in Denmark and in Germany to 14 in French Guiana (mean: 
4.45  ±  2.73 SD; Figure  1; Table  S2). The two sites where no ants 
were present were excluded from all analyses. The most common 
species in the dataset were Aphaenogaster senilis (209 observations, 
6 localities), Aphaenogaster iberica (175 observations, 10 localities), 
Camponotus cruentatus (98 observations, 2 localities) and Pheidole 
pallidula (76 observations, 9 localities; Table S3). We identified 26 
ant species as dominant at one or more sites in which they occurred 
(mean monopolization score >11.04%). Eight of these species were 
dominant at all sites in which they occurred (Table S3). On average, 
dominant species monopolized baits during 31.14% ± 2.76 SE of all 
observations.

3.1 | Is there evidence for the dominance–
impoverishment rule?

We found a significant linear relationship between dominant spe-
cies richness and overall species richness (R2 = 0.10 [fixed effects], 
R2 = 0.59 [total], p = 0.03, Figure 2a), but this relationship was posi-
tive rather than negative (slope = 0.79), a pattern opposite to that 
expected by the dominance–impoverishment rule. We found a uni-
modal relationship between overall species richness and the rela-
tive number of dominant workers (R2 = 0.19 [fixed effect] and 0.29 
[total], p = 0.01; Figure 2b).

3.2 | Do trade-offs promote coexistence within and 
among ant communities?

3.2.1 | The dominance–discovery trade-off

If ants adhere to the dominance–discovery trade-off, we would 
expect a negative relationship between dominance and dis-
covery ability such that subordinate species persist because 
they are faster at discovering baits than are dominant species. 
However, we found no relationship between monopolization 
and the percentage of baits discovered first (R2 = 0.15, p = 0.32, 

https://github.com/JKSheard/Tradeoffs.git
https://github.com/JKSheard/Tradeoffs.git
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Est. = 0.01). On average, dominant species discovered baits first 
61  ±  37% SD of the time and subordinate species discovered 
baits first 59 ± 37% SD of the time with no difference between 
the two groups (t73.27  =  0.27, p  =  0.79). In fact, only one site 
(Lower Blue Jay Campground in Cleveland National Forest, USA 
with three species present) showed a significant relationship be-
tween dominance and discovery (r  =  1, p  <  0.0001; Table  S4), 
but the pattern was opposite that predicted by the dominance–
discovery trade-off. We found no significant drivers of the 
dominance–discovery trade-off based on MAT, AP, AET or NDVI 
(p > 0.4 in all cases).

3.2.2 | The dominance–thermal tolerance trade-off

If ants adhere to the dominance–thermal tolerance trade-off, here 
represented by activity temperature range, then dominance and 
activity temperature range should be negatively correlated, with 
dominant species foraging at a narrower temperature range than 
do subordinate species. However, we found no trade-off between 
monopolization and activity temperature range (R2 = 0.15, p = 0.86, 
Est.  =  0.01). There was a slight difference in mean observed for-
aging temperature range, but this was the opposite of what the 
trade-off predicts, with dominant species having a broader activity 
temperature range than subordinate species (8.86°C ± 6.50 SD and 
6.53°C ± 6.80 SD, respectively, t75.68 = 2.0042, p = 0.049, Figure 3). 
Overall, only two sites showed a significant relationship between 
dominance and activity temperature. These were Regensburg 
Universität in Germany (r = 1, p < 0.0001) and La Turleda in Spain 
(r = 0.96, p = 0.0005, Table S4). In both cases, dominant species had 
a higher temperature range than subordinate species. We found no 
significant drivers of the dominance–thermal tolerance trade-off 
based on MAT, AP, AET or NDVI (p > 0.96 in all cases).

3.2.3 | The dominance–generalist trade-off

There was a significant relationship between monopolization and 
resource generalism measured as Hurlbert's PIE (R2 = 0.15, p = 0.02, 
Est. = −2.89). Dominant species were more specialized in their re-
source use than were subordinate species (PIE = 0.37 ± 0.23 SD and 
0.54 ± 0.25 SD, respectively, t82.21 = −3.94, p = 0.0002, Figure 4). 
Two sites showed a significant correlation between dominance and 
resource generalism (Girona forest, r = −0.94, p = 0.005 and Girona 
Universidad, r = −0.89, p = 0.04, Table S4), with dominant species 
being more specialized in both cases. We found a significant positive 
effect of annual precipitation on the dominance–generalist trade-off 

F I G U R E  2   Test of the dominance–diversity relationship of ants across 40 sites in North America, South America and Europe. (a) 
Relationship between species richness and number of dominant species (R2 = 0.10 [fixed effects], R2 = 0.59 [total], p = 0.03). (b) Relationship 
between species richness and the relative number of workers of dominant ants at site level (R2 = 0.19 [fixed effect] and R2 =0.29 [total 
effects], p = 0.01). Species richness increased linearly with number of dominant species and unimodally with relative number of dominant 
workers. Relative number of dominant workers was calculated as the number of dominant workers at a site divided by the total number of 
workers observed at a site

(a) (b)

F I G U R E  3   Boxplots showing the median, interquartile range, 
minimum and maximum temperature ranges for foraging workers of 
dominant and subordinate ant species from 40 sites across Europe, 
North America and South America. Black diamonds represent the 
mean. There was a significant difference in temperature range 
(p = 0.049), with dominant species having a higher range than 
subordinate species
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(Est. = 0.004, p = 0.04), but upon removing the outlier (French Guiana) 
this effect disappeared (Est. = 0.004, p = 0.16). There was no effect 
of MAT, AET or NDVI (p > 0.08 in all cases).

4  | DISCUSSION

Trade-offs can promote species coexistence in many taxa 
(Chesson,  2000), including ants (Bestelmeyer,  2000; Hölldobler & 
Wilson,  1990). In the absence of other factors, dominant species 
would be expected to outcompete subordinate species (Andersen 
& Patel, 1994; Hölldobler & Wilson, 1990). Yet, species diversity is 
sometimes higher where more dominant species are present (Arnan 
et al., 2018) or can increase at least up to a certain point before de-
creasing, leading to unimodal relationship (Andersen,  1992; Parr 
et al., 2005).

We found that across sites, species richness increased linearly 
with the number of dominant species present (Figure 2a) and had a un-
imodal relationship with the number of workers of dominant species 
present at a bait (Figure 2b), as in previous studies (Andersen, 1992; 
Parr et al., 2005). This suggests that rather than dominant species 
playing a strong role in suppressing the diversity of other species, 
habitat quality and favourable environmental conditions may in-
stead be more important for determining species richness, as has 
previously been found by others on smaller scales (Andersen, 1995, 
1997b). However, our study and others (Andersen, 1992; Morrison, 
1996; Parr et  al.,  2005) also show that species richness at baits 
decreases when the number of workers of dominant species be-
comes so high that dominant species can competitively exclude 

subordinates from resources. Such relationships are common in the 
case of non-native dominant species (Arnan et al., 2018).

Furthermore, we failed to find strong evidence for any of the 
three trade-offs commonly proposed to mediate species coexis-
tence within ant communities. In the late 1900s and early 2000s, 
there was a broad consensus that trade-offs in ant communities 
were common, and the ability of a species to break a trade-off was 
sometimes thought to be an explanation for its global success or in-
vasibility (Holway, Lach, Suarez, Tsutsui, & Case,  2002). However, 
as more data from field work across systems accrued, the gener-
ality of especially the dominance–discovery trade-off as an expla-
nation for coexistence seemed to be called into question (Jordan & 
Blüthgen, 2007; Parr & Gibb, 2012). Indeed, our results also fail to 
point to any sort of dominance–discovery trade-off or dominance–
thermal tolerance trade-off. Although we do find some evidence 
that dominant species may be more specialized in their resource use 
than subordinate species.

The dominance–discovery trade-off was not supported by our 
study. Only one site showed a trade-off between dominance and 
discovery ability. While previous studies have found support for 
this trade-off (Adler et al., 2007; Feener et al., 2008; Fellers, 1987; 
Lebrun & Feener,  2007), these were typically context-specific 
(Lessard et al., 2009; Parr & Gibb, 2012; Stuble, Pelini, et al., 2013). 
Even in studies where trade-offs occur or might occur, such commu-
nity-wide trade-offs are easily disrupted, whether by the presence 
of parasitoids (Feener et  al.,  2008; Lebrun & Feener,  2007) or by 
shifts in the availability of resources (Sanders & Gordon, 2003).

The dominance–thermal tolerance trade-off was also not sup-
ported by our study. We observed ants at a site six times over 
a 2-hr period. During these periods, dominant ants foraged 
within significantly broader temperature ranges than subordi-
nates (Figure  3), in contradiction with the proposed trade-off. 
Other studies using similar methods have also failed to find 
support for the dominance–thermal tolerance trade-off (Stuble, 
Rodriguez-Cabal, et al., 2013). However, this trade-off has some 
support in the literature when ants are observed using methods 
different from ours. Some studies have identified opposite diur-
nal activity patterns in dominant and subordinate ants of Spain 
(Cerdá et al., 1997; Cerdá, Retana, & Cros, 1998; Cerdá, Retana, 
& Manzaneda,  1998), Argentina (Bestelmeyer,  2000), North 
America (Albrecht & Gotelli, 2001) or differing thermal tolerance 
ranges along an elevational gradient (Lessard et al., 2009).

The dominance–generalism trade-off was the only trade-off de-
tectable across all sites combined. Dominant species were more 
specialized in their resource use than subordinate species (Figure 4). 
This may also explain why overall dominance, measured as monop-
olization, was low (only 30% of bait  ×  observation time combina-
tions were monopolized). Our results line up with theories stating 
that dominant species may specialize on certain large, high-reward 
resources (Pearce-Duvet & Feener, 2010) and that ants partition re-
sources both spatially and temporally (Delsinne, Roisin, & Leponce, 
2007). Another study found that subordinate species shift their for-
aging preferences in the presence of dominant species (Sanders & 

F I G U R E  4   Test of the dominance–generalism relationship of 
ants across 40 sites in Europe, North America and South America, 
where dominance is calculated as the percentage of discovered 
baits which were monopolized and generalism is calculated as 
Hurlbert's probability of an interspecific encounter index (PIE). 
Boxplot showing the median, interquartile range, minimum and 
maximum generalism values for foraging workers of dominant 
and subordinate ant species. Black diamonds represents the 
mean. Dominant species are significantly more specialized than 
subordinates (p = 0.0002)
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Gordon,  2000). To determine the generality of this, a global scale 
competitor removal experiment across multiple taxa would be of high 
value. There is some evidence that invasive species break the dom-
inance–generalism trade-off by being both dominants and general-
ists (Davidson, 1997, 1998; Davidson & Patrell-Kim, 1996; Human & 
Gordon, 1996; McPeek, 1996; Pearce-Duvet & Feener, 2010), which 
opens up the need for comparing the resource use of dominant na-
tives and dominant exotics.

Environmental drivers might promote trade-offs in ant communi-
ties. For example, the dominance–thermal tolerance trade-off might 
be more prevalent under extreme temperatures (Bestelmeyer, 2000; 
Cerdá et al., 1997; Cerdá, Retana, & Cros, 1998; Lessard et al., 2009). 
Although we were unable to detect any significant environmental 
drivers of the tested trade-offs, we mainly carried out experiments 
in Mediterranean and Temperate forests, woodlands and scrub. 
Future studies should therefore focus on sampling biomes across a 
broad range of environmental conditions.

We conclude that, although local evidence has previously 
been found for trade-offs in some ant communities (see e.g. Adler 
et al., 2007; Bestelmeyer, 2000; Fellers, 1987), there is no clear ev-
idence for the role of these three trade-offs as mechanisms for co-
existence on a larger geographical scale. Other studies have shown 
that trade-offs can interact (Lebrun & Feener,  2007) and may be 
context-specific, which makes detecting trade-offs and their drivers 
a complicated task. It could be the case that we did not examine 
activity over a wide enough range of temperatures to detect a dom-
inance–thermal tolerance trade-off, or we did not work in sites with 
high enough levels of dominance, or we might have gotten different 
results with pitfall or winkler traps instead of baiting experiments 
(Baccaro et al., 2012). Not only may there be trade-offs in species 
communities, but there are also trade-offs in how ant ecologists can 
address questions. Focusing on a single site for many months (e.g. 
Albrecht & Gotelli,  2001; Fellers,  1987; Stuble, Rodriguez-Cabal, 
et al., 2013) may provide in-depth understanding of that site; or one 
could examine the evidence for multiple trade-offs at multiple sites 
with the hope of gaining a breadth of understanding of those sites. 
Our approach was the latter approach. Moving forward, we suggest 
that removal experiments (e.g. Gibb, 2011; Sanders & Gordon, 2000) 
or highly controlled experiments in constructed communities, like 
those in freshwater cattle tanks (e.g. Chase, 2007), may bring fur-
ther understanding to the field. While we of course realize that 
some trade-offs might exist at some sites (indeed across our sites, 
we found occasional, but limited, evidence for a particular trade-off 
at a particular site), we found that three trade-offs previously pro-
posed to play an important role in structuring ant communities are 
not broadly supported.
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