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Abstract

Satellite data indicate significant advancement in alpine spring phenology over decades of climate
warming, but corresponding field evidence is scarce. It is also unknown whether this advancement
results from an earlier shift of phenological events, or enhancement of plant growth under
unchanged phenological pattern. By analyzing a 35-year dataset of seasonal biomass dynamics of
a Tibetan alpine grassland, we show that climate change promoted both earlier phenology and
faster growth, without changing annual biomass production. Biomass production increased in
spring due to a warming-induced earlier onset of plant growth, but decreased in autumn due
mainly to increased water stress. Plants grew faster but the fast-growing period shortened during
the mid-growing season. These findings provide the first in situ evidence of long-term changes in
growth patterns in alpine grassland plant communities, and suggest that earlier phenology and
faster growth will jointly contribute to plant growth in a warming climate.
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INTRODUCTION

Plants are known to respond to the seasonality of environ-
mental conditions such as temperature, precipitation, radia-
tion and day length (Cleland et al. 2007; Piao et al. 2019). At
mid to high latitudes, plant growth usually increases at the
beginning of the growing season in spring, reaches its maxi-
mum during the mid-growing season, and declines towards
the end of the growing season in autumn, a pattern that is
often temporally compressed at higher latitudes and altitudes
(Billings & Mooney 1968; K€orner 2003). Plant growth pat-
terns (i.e., phenology and growth rate) respond to climate
variation (Jonas et al. 2008; Wingler & Hennessy 2016) and
have an important role in regulating Earth’s climate because
they drive seasonal land-atmosphere exchange of carbon,
water and energy (Wang et al. 2011; Buitenwerf et al. 2015;
Xia et al. 2015). Plant growth patterns also influence the abil-
ity of plant communities to provision animals with habitats
and food resources (Hegland et al. 2009; Gonsamo et al.
2018).
Recent climate warming is generally expected to alleviate

low temperature constraints on plant growth in cold regions

(Park et al. 2019). For high-elevation and high-latitude vege-
tation, increasing evidence from satellite observations indicate
that over the past decades of warming, spring phenology
(Badeck et al. 2004; Shen et al. 2015a) and the timing of max-
imum photosynthesis (Xu et al. 2016; Park et al. 2019) have
tended to advance, while autumn phenology has tended to be
delayed (Barichivich et al. 2013; Liu et al. 2016). However,
despite the abundant evidence from remote sensing, there is a
dearth of corresponding field evidence on long-term phenolog-
ical changes in these ecosystems, as well as the underlying
mechanisms driving phenological changes (if any).
Warming can influence plant phenology by shifting the tim-

ing of phenological events, changing growth rate, or both
(Buitenwerf et al. 2015; Gonsamo et al. 2018). A number of
studies have documented that warming advances the phenol-
ogy of plants in the spring by accelerating the ecodormancy
break, but delays spring phenology by slowing down the
endodormancy break (Bibi et al. 2018; Piao et al. 2019).
Warming can also advance autumn phenology directly or
indirectly by reducing soil water availability (Estiarte &
Pe~nuelas 2015; Liu et al. 2016). Furthermore, warming often
enhances plant growth because air temperatures are
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commonly lower than the optimal temperature for plant
growth (Lambers & Chapin 1998; Gonsamo et al. 2018). On
the other hand, warming may reduce plant growth if the
warming-induced extension of growing season increases the
risk of spring frost damage (Richardson et al. 2018; Liu et al.
2018b). In addition, the effect of warming on phenology and
growth rate can be modulated by shifts in plant community
and functional group composition (Meng et al. 2017; Wolf
et al. 2017), a phenomenon more readily observed in long-
term studies (Hudson & Henry 2009; Harte et al. 2015). How-
ever, it remains unclear whether the long-term phenological
changes detected by remote sensing result from shift in the
timing of phenological events (Fig. 1a) and/or change in
growth rate (Fig. 1b) in response to climate warming.
Here, we report on a unique long-term (1980–2014) record

of seasonal biomass dynamics and community composition in
an alpine grassland on the Tibetan Plateau, which has experi-
enced a warming trend doubling the rate of the global average
over the past 50 years (Hansen et al. 2010; Chen et al. 2013).
Using this dataset, we aimed to uncover how the observed cli-
mate change affects growth patterns of alpine plants hidden
behind the acknowledged advancement in spring phenology.
Specifically, we tested the hypothesis (1) that climate warming
would enhance vegetation growth in addition to promoting
an earlier shift in phenology (Fig. 1c), as warming can allevi-
ate the constraints of low temperature on both plant ecodor-
mancy break and growth rate. We further tested the
hypothesis (2) that warming would also shorten the vegetation
growth period (Fig. 1d), which can cancel out the effect of
enhanced growth rate on biomass production. This is because
our previous study documented no systematic changes in
annual biomass production in the alpine grassland (Liu et al.

2018a). We finally tested the hypothesis (3) that a shift in
functional group composition would play an important role
in reshaping vegetation growth patterns under climate warm-
ing, as climate warming often shifts plant community compo-
sition and differentially influences plant phenology at the
species level (Dorji et al. 2013; Meng et al. 2017; Suonan
et al. 2017).

MATERIALS AND METHODS

Site description

We conducted this study at the Haibei National Alpine Grass-
land Ecosystem Research Station (37°360 N, 101°190 E, 3215
meters above sea level) located in the northeastern part of the
Tibetan Plateau, in Qinghai Province, China (Fig. S1). The
climate of the study site is influenced by a continental mon-
soon and characterized by short, cool summers and long, cold
winters. From 1981 to 2014, average annual air temperature
at the station was �1.1 °C, and monthly mean air tempera-
ture ranged from �14.42 to 10.46 °C. The highest temperature
occurred in July and the lowest temperature occurred in Jan-
uary. Average annual precipitation over the three decades was
487.8 mm, with most annual precipitation (84%) falling from
May to September. The area is covered by mesic meadow
consisting of C3 perennial species, dominated by grasses, such
as Stipa aliena, Elymus nutans and Helictotrichon tibeticum,
mixed with forbs, including Gentiana straminea, Tibetia hima-
laica, Saussurea pulchra and Medicago ruthenica, and sedges
such as Kobresia humilis and Carex przewalskii (Ma et al.
2017). The soil is classified as Mat-Gryic Cambisol in Chinese
Soil Taxonomy and as borolls in US Soil Taxonomy. In the
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Figure 1 Conceptual representation of the mechanisms of the advancement in spring phenology under climate warming. Four potential scenarios

responsible for this advancement are presented, including earlier shift of phenological pattern (a), enhancement of growth under the same phenological

pattern (b), both earlier shift of phenology and enhancement of growth (c), and earlier shift of phenology, enhancement of growth, and compression of

growth period (d).
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0–10 cm soil layer, soil bulk density is 0.8 g cm�3, soil organic
carbon content is 63.1 g kg�1, and soil pH is 7.8 (Liu et al.
2018a). Following local practice, the site has been lightly
grazed as winter pasture since 1980.

Long-term monitoring of annual biomass production and seasonal

biomass dynamics

From 1980 to 2014, annual biomass production of the plant
community was monitored using a harvesting method. For
our study, we defined annual biomass production as the
maximum aboveground biomass observed in August or
September (Liu et al. 2018a). Annual biomass production
was further separated into grass, forb and sedge functional
groups in the following years: 1980–1985, 1989, 1998–2000
and 2006–2014. Seasonal biomass dynamics of the plant
community were monitored by clipping aboveground bio-
mass once or twice each month from May to September
during the periods of 1980–1985, 1989, 2002–2004, 2006–
2010 and 2012–2014; the seasonal biomass dynamics of dif-
ferent plant functional groups were further monitored during
1980–1983 and 2007–2010. After harvesting, live plant sam-
ples were oven-dried at 65 °C until they reached a constant
weight.
Two sampling methods were used from 1980 to 2014 to

monitor plant biomass (Liu et al. 2018a). Before 2005, five
to ten 50 9 50 cm quadrats were randomly clipped during
each harvest within a permanent 250 9 230 m area. Starting
in 2005, a new strategy of systematic sampling was adopted.
An area of 150 9 150 m was divided into 25 permanent
squares, and the five squares on the diagonal were chosen.
Each chosen square was further divided into 25 blocks that
were each 6 9 6 m. Five 25 9 25 cm replicates were

randomly harvested from one of the 25 blocks in five chosen
squares.

Parameters to describe plant fast-growing phase

Seasonal biomass dynamics were simulated using linear, expo-
nential, monomolecular and logistic functions (Paine et al.
2012). We found that a three-parameter logistic function
appropriately described the aboveground biomass dynamics
across growing seasons (Fig. S2):

AGB ¼ L

1 þ e�kðx�x0Þ

where AGB is the aboveground biomass and x is the Julian
day. The parameters L, k and x0 represent the annual maxi-
mum aboveground biomass, the intrinsic rate of plant growth
and the timing of maximum growth, respectively (Table S1).
Fitted results from this method were validated with annual
aboveground biomass production data (r2 = 0.84, P < 0.001).
We then calculated the growth rate for each day by using dif-
ferential coefficients from this fitted equation (Fig. S3).
Finally, we defined spring, summer and autumn biomass pro-
duction as the sum of daily growth rate from April to May,
from June to July and from August to September, respectively
(Zhang et al. 2013a).
To explore how changes in plant phenology and growth

rate influenced seasonal biomass production over time, we
used the fast-growing phase concept (Gregorczyk 1991). The
mid-season ‘fast-growth phase’ was identified by the seasonal
dynamics of growth rate (Fig. S3). Specifically, the start and
end of the fast-growing phase were defined as the days of
maximum increase and maximum decrease in growth rate,
which also correspond to the days at which aboveground
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Figure 2 Long-term (1980–2014) changes in annual and seasonal aboveground biomass production at Haibei research station. The temporal trends in
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biomass reaches 21% and 79% of the annual maximum bio-
mass, respectively. The length of the fast-growing phase was
calculated as the number of days between the start and end of
the fast-growing phase.

Statistical analysis

We conducted linear regression to examine long-term inter-
annual trends of environmental factors (air temperature,
precipitation, humidity index, and soil moisture) and annual
biomass production. Although we had no observational data
of seasonal biomass dynamics from 1990 to 2001, plant
phenology as reflected by the Normalized Difference Vegeta-
tion Index (NDVI) data showed linear trends of change
over time (Fig. S4; Supplementary Information section S1
and S2). We thus used linear regression to analyse long-
term interannual trends of seasonal biomass production
(spring production, summer production and autumn produc-
tion), phenology (start, end, and length of the fast-growing

phase or growing season and timing of maximum growth),
and rate of maximum growth. We calculated the interannual
rate of change using the slope of linear regression. We used
t-tests to test for differences in relative abundance of func-
tional groups and in their phenology and growth rate
between 1980 to 1983 and 2007 to 2010. We used Pearson’s
correlation coefficients to investigate linkages between sea-
sonal biomass production, phenology and growth rate over
time.
To investigate how air temperature and precipitation influ-

enced plant phenology (start and end of the fast-growing
phase and timing of maximum growth), we developed 15 lin-
ear models within different temporal periods. Besides the
monthly values (January to August), we split the air tempera-
ture and precipitation data into four phases corresponding
with stages of plant growth and their three combinations con-
sisting of the adjacent two phases. Precipitation from the pre-
vious year was retained for plant growth in the following year
(Robinson et al. 2013), and October to December in the previ-
ous year was defined as the ‘dormant period’. Most of the
species at our site begin to grow in April (Zhou et al. 2014),
so we labelled the period between January and March as the
‘pre-growing season’. Due to low growth rates in April and
May, we labelled this period of growth as the ‘early growing
season’. The period from June to August, when plants grow
rapidly, was labelled as the ‘mid-growing season’. The month
of September was not included in this analysis not only
because it lagged behind the fast-growing phase, but because
September precipitation was not usually retained in the fol-
lowing year. To assess climatic control of the rate of maxi-
mum vegetation growth, we developed four linear models
within the periods of June, July, August, and the ‘mid-growing
season’ when climatic conditions directly influenced vigorous
growth rate. Model performance was evaluated using Akaike’s
information criterion (AIC). Models were considered to have
statistical support if P < 0.05.
We used linear regression to investigate the relationship

between the start of the fast-growing season and pre- and
early-season growing degree days over time. The growing
degree day requirement for vigorous plant growth was calcu-
lated as an integration of daily average air temperature above
a threshold of 0 °C from January 1 to May 31 (Fu et al.
2019). In addition, we used linear regression to explore the
relationship between the end of the fast-growing season and
mid-growing season soil moisture over time. We also used
general linear mixed-effects models to evaluate the effects of
air temperature, precipitation and aboveground plant biomass
on monthly mean soil moisture during mid-growing season
(June to August), in which month was treated as a random
factor (‘lme4’ package in R software). To quantify the relative
importance of the three predictor variables on soil moisture,
we next performed a multimodel inference based on AIC
(Deng et al. 2018). Specifically, we first used the ‘lmer’ func-
tion to fit a global model, and then used the ‘dredge’ function
to generate a full submodel set from the global model
(‘MuMIn’ package in R software). Finally, we produced a top
model set based on a cut-off of DAIC < 5, and used the ‘mod-
el.avg’ function to estimate the model parameters of the top
model.
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To compare the differences in changes in phenology and
growth rate of different functional groups over time, we stan-
dardized growth patterns for grass, forb and sedge functional
groups by dividing them by their respective annual biomass
production. We also used partial redundancy analyses to
quantify the relative importance of the differential changes in
phenology and growth rate of functional groups and the shifts
in functional group composition for explaining variance in
community growth patterns (‘vegan’ packages in R software).
All statistical analyses were conducted using R 3.5.0 software
(R Core Team, 2018).

RESULTS

Long-term changes in annual and seasonal biomass production

Over the past 35 years, annual biomass production ranged
from 237.3 to 484.5 g m�2 year�1, without exhibiting any sig-
nificant overall trend (Fig. 2a; an increase of 14.7 g m�2 per
decade; r2 = 0.08, P = 0.10). However, seasonal biomass pro-
duction showed strikingly different patterns: spring produc-
tion (April–May) increased by 15.5 g m�2 per decade

(Fig. 2b; r2 = 0.39, P < 0.01), autumn production (August–
September) decreased by 24.0 g m�2 per decade (Fig. 2d;
r2 = 0.32, P = 0.01), whereas summer production (June–July)
did not exhibit any significant trend (Fig. 2c; an increase of
22.0 g m�2 per decade; r2 = 0.17, P = 0.09).

Long-term changes in community phenology and growth rate

From 1980 to 2014, the start of the fast-growing phase
advanced at a rate of 5 days per decade (Fig. 3a and b;
r2 = 0.31, P = 0.02), while the end of the fast-growing phase
advanced at a rate of 12 days per decade (r2 = 0.51,
P < 0.001). The length of the fast-growing phase thus became
shorter over time (7 days per decade; r2 = 0.42, P < 0.01).
Over the same period, the rate of maximum growth increased
by 0.7 g m�2 day�1 per decade (Fig. 3c; r2 = 0.41, P = 0.004),
and the timing of maximum growth advanced at a rate of
9 days per decade (r2 = 0.47, P = 0.002). These changes in
growth patterns were observed in years that had more fre-
quent measurements (Fig. S5; ≥7 times per year). Further
analysis showed that the earlier phenology of the fast-growing
phase was related to increased spring production and reduced
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autumn production, whereas the shorter fast-growing phase
and the enhanced maximum growth jointly led to no change
in summer production (Fig. S6).

Effects of climate change on community phenology and growth rate

Over 35 years, annual mean air temperature at the study site
increased by 0.4 °C per decade (Fig. 4a; r2 = 0.40, P < 0.001),
and the warming trend was statistically significant (P < 0.05)
for both March and from July to September. Annual precipi-
tation did not vary systematically (Fig. S7a; r2 = 0.06,
P = 0.16); precipitation in July, however, decreased by
11.0 mm per decade (r2 = 0.13, P = 0.04). In contrast, the
annual humidity index tended to decline (Fig. S7b; r2 = 0.11,
P = 0.06), with a significant decline in July (P = 0.02). In
addition, soil moisture at the 5 cm depth decreased from 2002
to 2014 (Fig. 4b; r2 = 0.39, P = 0.04). Overall, the site became
both warmer and drier over our study period.
Increased pre- and early-season growing degree days (Jan-

uary–May) and warmer March temperatures were associated
with an earlier start of the fast-growing phase (Fig. 4c and
Fig. S8), while a reduction in both soil moisture and precipita-
tion during mid-growing season (June–August) was related to
an earlier end of the fast-growing phase (Fig. 4d and Fig. S8).
At the same time, increased temperatures and reduced precipi-
tation in July were related to a higher rate of maximum
growth (Fig. S8).

Changes in abundance, phenology and growth rate of different

functional groups

Between the two periods, 1980–1983 and 2007–2010, the
abundance of grasses increased and the abundance of forbs
and sedges decreased (Fig. 5). Over the same period, grasses
and forbs were more sensitive to climate change than sedges
(Fig. S9). Specifically, grasses and forbs started and ended
growth earlier, had a higher growth rate, but had a shorter
fast-growing phase (Fig. S10). In contrast, sedges did not
exhibit any significant trends. Partial redundancy analysis fur-
ther showed that the changes in growth patterns of grasses
and forbs, rather than the shifts in plant functional group
composition, were mainly responsible for the observed
changes in community phenology and growth rate (Fig. S11).

DISCUSSION

Our results support the first two hypotheses that long-term
climate warming enhanced plant maximum growth and short-
ened the fast-growing phase, in addition to shifting phenology
earlier. These changes in growth patterns led to altered sea-
sonal biomass production: spring production increased, sum-
mer production remained relatively constant and autumn
production decreased over time in this alpine grassland
(Fig. 6). Inconsistent with our third hypothesis, the observed
changes in growth patterns were largely attributed to changes
in phenology and growth rate of grasses and forbs, rather
than effects of shifting functional group composition. Alto-
gether, this study, to our knowledge, provides the first in situ
evidence that the growth patterns of alpine grassland plants

have strongly responded to long-term climate change, despite
the lack of systematic change in annual biomass production.

Earlier phenology and faster growth jointly contributed to changes

in growth patterns

Results from 35 years of monitoring show an earlier start of
the fast-growing phase and enhancement in maximum growth
in the alpine grassland we studied. These changes indicate that
earlier phenology and enhanced growth in spring jointly con-
tributed to the advancement in the start of the growing season
detected by satellite-derived NDVI data (see Fig. S4a). The
earlier start of the fast-growing phase was associated with
increases in spring temperatures and growing degree days,
which may accelerate ecodormancy break and spring snow
thaw (Chen et al. 2015; Suonan et al. 2017; Bibi et al. 2018).
In contrast, enhanced maximum growth during the mid-

growing season may be attributable to three factors. First, cli-
mate change led to increased synchronization in the timing of
maximum growth of different functional groups (see
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Fig. S10c). Second, warming increased maximum growth of
grasses and sedges, likely because mid-growing season temper-
atures were still lower than their optimal growth temperature
(Lambers & Chapin 1998). Third, declining mid-season pre-
cipitation might have also contributed to increased plant
growth, as cloud cover accompanying frequent mid-season
precipitation events tends to reduce light availability to plants
(Graham et al. 2003; Piao 2003). Overall, an earlier start of
the fast-growing phase and enhancement in maximum growth
suggest that climate warming benefits early season plant
growth in the alpine grassland community.
Our analyses also indicate that the end of the fast-growing

phase advanced more than the start of the fast-growing phase.
One possible explanation for the earlier end is that climate
change may have led to increased plant water stress during
the middle of the growing season (Ernakovich et al. 2014;
Estiarte & Pe~nuelas 2015). Consistent with this mechanism,
we found a reduction in mid-season soil moisture over our
study period, which was attributed to (1) the reduction in
mid-season precipitation, and (2) greater consumption of
available soil water by the warming-induced higher spring bio-
mass (Table S2). Admittedly, our consideration of this mecha-
nism does not rule out other non-mutually exclusive
mechanisms. For example, the length of the plant growth per-
iod may be controlled by intrinsic processes such as pro-
grammed cell death (Lim et al. 2007; Steltzer & Post 2009),
which may cause an earlier end of the plant growth following
an earlier start. Furthermore, a reduction in pre-season soil
moisture under warming may have contributed to the advance

in the end of fast growth (Yang et al. 2019). Further research
is needed to investigate these potential mechanisms.

Minor contribution of functional group composition shift to changes

in growth patterns

Previous work suggests that shifts in functional group compo-
sition influence phenological response to temperature change
in Tibetan alpine grasslands (Meng et al. 2017). Our findings
reinforce this idea, but reveal that shifts in functional group
composition had limited effects on long-term changes in plant
growth patterns in this alpine grassland. Our previous study,
at the same site, suggested that under a warmer and drier cli-
mate, alpine plant community composition shifts towards
deep-rooted grasses at the expense of the shallow-rooted
sedges and forbs (Liu et al. 2018a). In the present study, we
found that the fast growth period for grasses occurred later
than for both forbs and sedges, and that forbs had the highest
maximum growth rate among all three functional groups (see
Fig. S9). Thus, the observed shifts in functional group compo-
sition would have led to a delayed phenology and a reduced
maximum growth if it is important; however, this is not what
we observed.
It should be noted that sedges were less sensitive to climate

change than were grasses and forbs. The start of sedge growth
did not obviously change in response to warmer spring tem-
peratures – a pattern supported by a warming experiment at
the same study site (Suonan et al. 2017). One potential expla-
nation is that photoperiod plays a modulating role and

Figure 6 Illustration of mechanisms of long-term changes in plant growth patterns in a Tibetan alpine grassland. Climate warming shifted the start of fast-

growing phase earlier and enhanced rate of maximum growth while reduction in mid-season soil moisture accelerated the end of fast-growing phase. In

contrast, a shift in functional group composition towards grasses induced by reduced soil moisture contributed less to community phenology and growth

rate (black dotted arrows in Figure). The positive effect of enhanced maximum growth on biomass production of fast-growing phase was cancelled out by

the negative effect of shortened growth period. The earlier phenology led to an increase in spring biomass production and a decrease in autumn biomass

production. The increased spring biomass production contributed to reduced mid-season soil moisture due to more water demand of plant growth.
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inhibits the positive effect of climate warming on the start of
sedge growth (Keller & K€orner 2003; K€orner & Basler 2010).
In contrast, no significant change in the end of sedge growth
may be attributed to the lack of effect of mid-season soil
water reduction on sedge water stress, as sedges nearly com-
plete their fast-growing phase in June when soil moisture is
relatively high.
In agreement with the changes in alpine grassland growth

patterns we observed, many studies of crop phenology find
that a warmer climate shifts sowing timing earlier and
enhances crop growth (Patil et al. 2010; Sacks & Kucharik
2011; Liu et al. 2013; Zhang et al. 2013b); however, the mech-
anisms between crop and alpine systems might differ. Com-
pared with relatively simple cropland communities, growth in
natural grassland depends on diverse responses of different
species to warming, influenced by shifts in functional group
composition. In addition, phenology in perennial grassland,
such as our alpine grassland, may be influenced by winter
warming through slowing down endodormancy break. In con-
trast, the warming effect does not always occur in croplands
because most crops complete their life cycle within one year
under often intense human management.
Our findings highlight a crucial contribution of climate

change to long-term changes in grassland growth patterns in
the temperature-sensitive region. However, we cannot rule out
the potential roles of other factors, such as increasing nitrogen
deposition or ecological succession, in driving the observed
patterns. The relative contributions of these drivers to plant
growth patterns warrant future investigation. Despite this
caveat, this study has several important implications for
understanding ecosystem function and vegetation-climate feed-
backs. First, the earlier plant phenology might alter the life
cycle of alpine plants via effects on pollination and autumn
seed maturation. Second, the earlier plant phenology could
cause trophic decoupling of food webs if phenological shifts
of other trophic levels cannot keep pace with changes in plant
phenology (Post et al. 2008; Thackeray et al. 2016). Third, the
changes in growth patterns of the aboveground plant compo-
nent may influence belowground phenology because root
growth depends on leaf photosynthesis in grasslands (Steina-
ker & Wilson 2008). Lastly, the earlier phenology and faster
growth of plants may generate a cooling effect through vege-
tation-evapotranspiration feedback in the alpine region (Jeong
et al. 2009; Shen et al. 2015b).
In summary, based on a unique 35-year dataset of seasonal

biomass dynamics, we found that climate change reshaped
growth patterns of alpine plant communities by shifting phe-
nology earlier, enhancing growth rate and shortening growth
period. This finding improves our understanding on the mech-
anism underlying the advancement in alpine spring phenology
under climate warming. Furthermore, we found that the
increase in spring production due to the earlier start of fast-
growing phase was counteracted by the reduction in autumn
production due to an earlier end, contributing to no change in
annual biomass production. Thus, elucidating how phenologi-
cal shifts differentially affect biomass production during dif-
ferent growth stages holds the key to better understanding the
responses of grassland biomass production to future climate
warming.
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