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We combined participatory science data and museum records to understand
long-term changes in occupancy for 29 ant species in Denmark over 119
years. Bayesian occupancy modelling indicated change in occupancy for 15
species: five increased, four declined and six showed fluctuating trends. We
consider how trends may have been influenced by life-history and habitat
changes. Our results build on an emerging picture that biodiversity change
in insects is more complex than implied by the simple insect decline narrative.
1. Introduction
There is a pressing need to understand which insect taxa are declining, which are
stable, which are increasing and why. Most evidence is from bees, butterflies and
dragonflies [1–6]; ants, despite their ubiquity, importance and abundance [7,8],
have largely been ignored. The dearth of long-term studies of ants is likely attribu-
table to the cost of acquiring data over large temporal and spatial scales [9]. One
solution is to combine data from multiple sources [10–12], including museum
collections and participatory science (citizen science) projects [4,12–14].

There are several challenges in dealing with long-term data from multiple
sources: differential sampling effort [15], species bias [16,17] and identification
errors [18]. Bayesian occupancy models [19] have proven useful in addressing
these challenges, e.g. by using contextual information on sampling effort
[20–22]. Thus, measuring occupancy trends has become a common way to
assess biodiversity changes [23].

Here, we use Bayesian occupancy modelling [19,24] to estimate long-term
changes in occupancy of 29 Danish ant species from 1900 to 2019 and consider
possible drivers.
2. Material and methods
(a) Data
The combined dataset consisted of seven datasets (table 1) binned into decades
(figure 1a) and 10 × 10 km grid cells. We excluded detections of unidentified and
non-native species, and those without collection date or geographical coordinates.
The combined dataset spanned 119 years (108 sampled years), from 1900 to 2019,
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Table 1. Overview of datasets used in this study after filtering. The combined dataset covered the years 1900–2019; although 12 years were unsampled, all
decades were. There were 4597 unique detections for 51 species and 472 10 × 10 km grid cells, covering 75% of Denmark.

data source datatype decades
unique
detections

native
species

modelled
species

total grid cells
(included in model) visits

NHM Denmarka [25] 1 11 (1903–2003) 2379 45 29 294 (218) 1552

NHM Aarhusa [26] 1 7 (1900–1972) 408 30 24 146 (114) 274

C. Skøttb [27] 1 2 (1960–1979) 940 32 26 216 (166) 885

The Ant Huntc [28] 3 1 (2017–2018) 666 28 23 184 (136) 501

S. Schärb [29] 1 1 (2011–2015) 88 29 24 17 (15) 57

EuroAntsd [30] 2 1 (2012–2019) 98 27 19 4 (4) 11

H. Holgersena [31] 1 1 (1981–1987) 18 13 13 9 (8) 11

combined 12 (1900–2019) 4597 51 29 472 (284) 3291
aMuseum collection.
bPersonal collection.
cParticipatory science.
dField course.

(b)(a)
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Figure 1. Temporal and spatial distribution of the combined dataset. (a) Number of detections for each decade within each dataset. (b) Number of decades with
data for each 10 × 10 km grid cell of Denmark.
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and included 4597 unique detections (combinations of site, date
and species) for 51 species (table 1; electronic supplementary
material, S1), covering 75% of Denmark (472 of 633 grid cells;
figure 1b; electronic supplementary material, S2). However, 188
grid cells were only visited in a single decade. These were
excluded from our model, reducing spatial coverage to 45%. Of
the remaining 284 grid cells, 88% were included in two or
more of the individual datasets.

We classified the data into three data types [12,32], based on
information about the sampling protocols and the number of
species recorded during a visit (electronic supplementarymaterial,
S3). Most datasets are based on collections, which are likely pres-
ence-only datasets and were categorized as datatype1. However,
EuroAnts is a field course where students record all species
found at sites, so was categorized as datatype2. The Ant Hunt
used 2 h baiting experiments rather than active searching and
was categorized as datatype3. These last two datasets are more
likely to contain true absence data. Further information about the
datasets is provided in electronic supplementary material, S1–S4.

Species detections were converted to detection histories [33] by
organizing data into visits (unique grid cell–date combinations).
Species were assigned a 1 if detected during a visit and a 0 if not,
generating non-detections [5,32,34–36]. Species were selected for
occupancy modelling based on the total number of detections, pro-
portion of non-detections and the 90th percentile of detections
within decades, resulting in 30 species [37,38]. We excluded Lasius
platythorax, a species only recently separated from Lasius niger
[39], leaving 29 species (electronic supplementary material, S5).

(b) Bayesian occupancy modelling
We fitted a Bayesian occupancy model for each species following
[12,38–41] to estimate occupancy (proportion of occupied 10 ×
10 km grid cells) per decade from 1900 to 2019.

The occupancy model consists of two submodels. The state
model describes the true occupancy state of a species (1 or 0)
based on the probability of occupancy ψ at a grid cell i during a
decade t: zit∼ Bernoulli(ψit); logit(ψit) = log(ψit/1− ψit) = bt+ ui,
where bt and ui are the effects of grid cell and decade. Observations
(y) are conditional on the species being present (z = 1): yitv|zit∼
Bernoulli( pitv ∗ zit), where p is the detection probability and v is a
visit. Detection is modelled in the observation submodel. For
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each visit (v), grid cell (i) and decade (t), for a given datatype,
the probability of detection is given by logit( pitv) = log( pitv/
1 – pitv) = at+ β1 ∗ datatype2itv+ β2 ∗ datatype3itv, where at is the
decade effect. Parameters β1 and β2 estimate differences in log( pitv)
for datatype2 and datatype3, relative to datatype1.

Model priors were set following others, with vague, unin-
formative priors for all parameters except the decade effect
of the state model, where we use a random walk, allowing
the model to share information between time periods, which
is especially advantageous for datasets with low recording
intensity [38,40,42]:

bt � Normal(mb, 10
4) for t ¼ 1

Normal (bt�1, s2
b) for t.1

�

where μb∼Normal(0, 100) and σb∼ |Student-t on 1 d.f.|.
Data formatting and Bayesian occupancy modelling were

carried out in the package sparta version 0.2.7 in R v. 3.6.3
[41,43] using JAGS v. 4.3.0 [44] through the package R2jags
version 0.6.1 [45], with half-Cauchy hyperpriors using three
chains, 50 000 iterations, a burn-in of 25 000 iterations and a
thinning rate of 3 [35]. If convergence (Rhat < 1.1) [24,46] was
not reached, models were rerun doubling the number of
iterations and always discarding half as burn-in.

We evaluated model performance by calculating the median
uncertainty (the width of the 68% credible interval (1 s.d. either
side of the mean)) for each species across decades and for each
decade across species. We then calculated Spearman’s rank cor-
relation between uncertainty and (i) number of detections for a
species, (ii) median occupancy and (iii) decade.

(c) Occupancy change
We calculated the mean occupancy for each decade and identified
the peaks and troughs for each species. We calculated the differ-
ence between the peaks and troughs and report a ‘confidence’
score for change as the percentage of the posterior distribution
that has the same sign as the mean. Species with confidence
scores less than 80% were classified as stable. If confidence scores
were greater than or equal to 80%, species with only positive
changeswere categorized as increasing, species with only negative
changes as declining and species that showed both positive and
negative changes as fluctuating. We interpret a confidence score
greater than or equal to 95% as strong evidence of change, greater
than or equal to 90% as moderate evidence, and greater than or
equal to 80% as weak evidence.
3. Results
Five species increased in occupancy, four declined, six fluctu-
ated and 14 were stable (figure 2), including some that show
change, but with too high uncertainty to draw firm con-
clusions (electronic supplementary material, S4 and S6).
Spearman’s rank correlation showed no correlation between
uncertainty and the number of detections (ρ= 0.26, p = 0.17)
or decade (ρ =−0.35, p = 0.27), but there was a significant cor-
relation with species occupancy (ρ = 0.48, p = 0.008; electronic
supplementary material, S7).

(a) Increasing species
Camponotus herculeanus increased from0.04 in 1900–1909 to 0.09
in 1940–1949 (125% change, 82% confidence). It remained stable
until 1950–1959, then increased from 0.065 to 0.24 in 2010–2019
(269% change, 97% confidence). Formica picea increased from
0.25 in 1900–1909 to 0.41 in 1970–1979 (64% change, 83%
confidence), then stabilized. Formica rufa increased from 0.67
in 1900–1909 to 0.84 in 1970–1979 (25% change, 83% confi-
dence), where it stabilized. Formica uralensis increased from
0.05 in 1900–1909 to 0.27 in 1970–1979 (440% change, 97% con-
fidence), then stabilized until 1980–1989 (79% confidence)
before increasing again from 0.19 to 0.35 in 2010–2019 (84%
change, 87% confidence). Myrmica ruginodis was stable until
1950–1959, then increased from 0.80 to 0.88 in 1970–1979 (10%
change, 83% confidence), where it stabilized.

(b) Declining species
Lasius fuliginosus was stable until 1920–1929, then declined
from 0.71 to 0.43 in 1970–1979 (39% change, 94% confidence),
where it stabilized. Myrmica rubrawas stable until 1940–1949,
then declined from 0.87 to 0.62 in 1990–1999 (29% change,
88% confidence). Myrmica sabuleti was stable until 1940–
1949 before declining from 0.70 to 0.05 in 2010–2019 (93%
change, 100% confidence). Myrmica schencki was stable until
1940–1949, then declined from 0.37 to 0.24 in 2010–2019
(35% change, 82% confidence).

(c) Fluctuating species
Formica polyctena increased from 0.29 in 1900–1909 to 0.75 in
1940–1949 (159% change, 88% confidence), then declined to
0.17 in 1960–1969 (77%change, 99%confidence), and increased
to 0.71 in 1990–1999 (318% change, 99% confidence) before
declining to 0.54 in 2010–2019 (24% change, 80% confidence).
Formica rufibarbis was stable until 1930–1939, then declined
from 0.58 to 0.35 in 1970–1979 (40% change, 95% confidence).
It then increased to 0.52 in 2010–2019 (49% change, 85% confi-
dence). Formica sanguinea increased from 0.20 in 1900–1909 to
0.43 in 1960–1969 (115% change, 89% confidence), then
declined to 0.22 in 2010–2019 (49% change, 93% confidence).
Lasius umbratus declined from 0.49 in 1900–1909 to 0.21 in
1970–1979 (57% change, 92% confidence) then increased to
0.48 in 2010–2019 (129% change, 94% confidence). Myrmica
rugulosa was stable until 1940–1949, then declined from 0.39
to 0.28 in 1970–1979 (28% change, 86% confidence) then
increased to 0.44 in 2010–2019 (57% change, 83% confidence).
Tetramorium caespitum was stable until 1940–1949, then
increased from 0.66 in 1940–1949 to 0.80 in 1980–1989 (21%
change, 83% confidence), then declined back to 0.66 in 2010–
2019 (18% change, 86% confidence).
4. Discussion
Although 14 of 29 species showed stable occupancies from
1900 to 2019, estimates remained imprecise for many species,
and 22 species could not be assessed owing to data deficiency
(electronic supplementary material, S1 and S5). However, the
analysed species exhibit typical behaviours, life histories,
foraging strategies, etc. of many native Danish ants.

Four declining species and three fluctuating species exhibit
declines in recent years. Two of these (F. polyctena and F. sangui-
nea) aremound-building species typically found in forests with
open, sun-exposed areas [47,48], along with Lasius fuliginosus,
which commonly forms large carton nests in cavities at the
base of old trees [48]. Danish forests have been increasing
since the 1900s and today cover 14.7% of the country [49].
This decline is mainly driven by an increase in monocultures
of coniferous plantations [50], which are generally dense and
with low light levels in the understorey. Closure of the tree
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canopy, habitat change and disturbance have caused declines
in Formica spp. elsewhere [51]. Two forest species
(C. herculeanus and F. rufa) increased in occupancy (though
the trend for F. rufa may be changing with a 14% decline
from 1970–1979 to 2010–2019, 73% confidence). Camponotus
herculeanus typically occurs in coniferous or mixed conifer–
broadleaf forests with a high percentage of Picea abies [47,51],
which is one of the most common Danish trees [49].

Three of the species that have shown some decline
(M. sabuleti,M. schencki, T. caespitum) occur in dry open habitats
[47,48]. Their decline may be linked to decreases in available
habitat and increases in precipitation. The extent of dry, open
habitats in Denmark has declined from approximately 25% in
1888 to less than 10% in 2004, owing to conversion to agriculture
and forest [50]. Average precipitation (mm) and days with
greater than or equal to 10 mm precipitation have increased
from 712 mm and 17 days in 1961–1990 to 791.9 mm and 20.3
days in 2006–2015 [52]. Conversely, three of the recently increas-
ing species (M. ruginodis, F. picea and F. uralensis) occur inwetter
habitats, such as bogs and water-drenched soils [48].

Dietary specialists may be more sensitive to disturbance,
such as urbanization [53]. Most Danish ants are generalist
omnivores, but the diets of four recently declining species
(L. fuliginosus, M. schencki, F. polyctena and F. sanguinea)
tend to be especially protein-rich [48].

Finally, changes in the occupancy of some ant species
may be due to changes in conditions for other species on
which they depend. In areas where they co-occur, F. uralensis
is outcompeted by F. sanguinea andM. rubra [48], so its increase
could be linked to decreasing competition. Lasius umbratus
(currently increasing) depends on species such as L. niger and
L. platythorax for nest construction [48] and may benefit from
L. niger being the most common ant species in Denmark.

5. Conclusion and future directions
We provide the first insights to our knowledge into long-term
occupancy trends for ants.We find declining species are associ-
ated with dry, undisturbed habitats and open forests and have
protein-rich diets, whereas increasing species are wet- and dis-
turbance-tolerant and tend to be omnivores. These trends
appear to be directly linked to changes in habitat and climate.

Ants can host many dependent species [54,55]. As a result,
species that depend on declining ant species may also decline.
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For example, 70 taxawere found in nests of F. polyctena [55] and
the decline in the distribution ofM. sabuletimay be a contribut-
ing factor to the decline in its butterfly parasite, Phengaris
(=Maculinea) arion, which is currently found in only one area
of Denmark [56].

Akeycaveatof studyingants comparedwithother insect taxa
is that colonies are the units of selection, and colonies can persist
for decades, while workers might live for less than a year.
However, most of the data come from collections of workers.

The lack of standardized long-term data is problematic
for many taxa besides ants, and this challenge is unlikely to
change in the near future. While combining multi-sourced
data is helpful, and may shed some light on the occupancy
of overlooked taxa, it is not a panacea. Many species lack suf-
ficient data for modelling. Participatory science has proven
efficient for compiling data, yet participants may overlook
rare and cryptic species and are likely to be spatially
biased. Combining participatory science with expert searches
and focusing on the resampling of sites could prove ben-
eficial. For example, in this study, 188 grids were visited in
just one decade. Through resampling, spatial coverage
could be increased to 75%, thereby improving our ability to
understand both historic and future trends in occupancy.

Data accessibility. The data used in this study along with all scripts used
to generate the analyses and model outputs are available from the
Dryad Digital Repository: https://doi.org/10.5061/dryad.bnzs7h4bj
[57]. Raw data from the Natural History Museum of Denmark are
available via https://doi.org/10.15468/xcwkfb [25]. Raw data from
the Natural History Museum of Aarhus are available via https://
doi.org/10.15468/wp3kzr [26]. Raw data from The Ant Hunt are
available via GBIF https://doi.org/10.15468/dcijnc [28]. Raw data
from Christian Skøtt are available via https://doi.org/10.15468/
2xh5fd [27]. Raw data from EuroAnts are available via https://doi.
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able via https://doi.org/10.15468/zkm8mj [31]. Raw data from Sämi
Schär are available via https://doi.org/10.15468/wqmjjt [29].
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