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Biologists have long been fascinated by the processes that give rise to pheno-
typic complexity of organisms, yet whether there exist geographical hotspots
of phenotypic complexity remains poorly explored. Phenotypic complexity
can be readily observed in ant colonies, which are superorganisms with mor-
phologically differentiated queen and worker castes analogous to the
germline and soma of multicellular organisms. Several ant species have
evolved ‘worker polymorphism’, where workers in a single colony show
quantifiable differences in size and head-to-body scaling. Here, we use
256 754 occurrence points from 8990 ant species to investigate the geography
of worker polymorphism. We show that arid regions of the world are the
hotspots of superorganism complexity. Tropical savannahs and deserts,
which are typically species-poor relative to tropical or even temperate for-
ests, harbour the highest densities of polymorphic ants. We discuss the
possible adaptive advantages that worker polymorphism provides in arid
environments. Our work may provide a window into the environmental
conditions that promote the emergence of highly complex phenotypes.
1. Introduction
Phenotypic complexity has been studied in relation to ecology and evolution of
lineages, but the modern-day geographical distribution of such complexity
remains enigmatic [1]. Identifying such geographical hotspots of phenotypic
complexity may help provide a window into the environmental conditions
that promote phenotypic innovation. However, if asked which part of the
world comprises an overabundance of extant and highly complex organisms,
one would probably not know the answer.

The concept of phenotypic complexity can be defined in a number of ways
and described at various levels of organizations: from genes, cells, individuals
to societies [2]. McShea [2], for example, defines complexity as the number of
different part types at a given hierarchical level. Within a multicellular organ-
ism, phenotypic complexity is most often quantified as the number of cell
types [3]. A eusocial insect colony, such as that of ants, bees, wasps and ter-
mites, is thought to be analogous to a superorganism with a reproductive
queen caste functioning as its germline and non-reproductive worker caste
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Figure 1. Morphologically simple versus morphologically complex superor-
ganisms. Worker polymorphism is a correlate of superorganism complexity,
where a monomorphic worker caste is considered to represent a morphologi-
cally simple superorganism, whereas polymorphic worker caste is considered
to represent a morphologically complex superorganism. A monomorphic
worker caste is defined by limited size and head-to-body scaling variation.
A polymorphic worker caste is defined by significant variation in size and/
or head-to-body scaling. For a complete detailed description of worker
caste polymorphism classification, see electronic supplementary material,
figure S1. Adapted from Hölldobler & Wilson [9].
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functioning as its soma [4–7]. In solitary multicellular
organisms, a single genome can produce differentiated cell
types in response to cues from its internal environment, like
morphogen gradients. Similarly, in superorganisms, a single
genome can also produce morphologically differentiated
castes within a single colony in response to external, such as
nutrition, and internal, such as hormonal, cues [8–11]. There-
fore, eusocial insects offer a unique opportunity to study the
geography and environmental drivers of superorgansim
complexity.

In addition to the morphologically distinct reproductive
queen caste and a non-reproductive worker caste, some
species of ants display remarkable variations in the worker
caste [12]. Worker ants of the same colony can differ dramati-
cally in their size and head-to-body scaling (see figure 1;
electronic supplementary material, figure S1). This interindi-
vidual variation within a colony is called ‘worker
polymorphism’ and is associated with enhanced division of
labour [8]. In some cases, polymorphic ant species exhibit
wide variation in body size with little variation in head to
body scaling [13]. Such species are considered more morpho-
logically complex than species with limited worker body size
variation (i.e. monomorphic worker castes) but less complex
than species with discrete morphological castes, which vary
tremendously in both size and head-to-body scaling
(reviewed in [5]). Therefore, superorganisms fall along a con-
tinuum of phenotypic complexity that is governed by
multiple-levels of selection, from individual to colony-level
selection [7,9,14]. Furthermore, previous work has identified
a suite of traits that generally correlate with the morphologi-
cal complexity of superorganisms, including colony size,
reproductive division of labour, queen–worker dimorphism
and worker polymorphism [8,12,14–18]. The degree of mor-
phological differentiation within the worker caste of a
single colony can thus be used as one proxy for the complexity
of superorganisms across ants [8,19] (figure 1).

Worker polymorphism evolved at least eight times within
ants [13] and was previously estimated to occur in 13% of the
approximately 330 ant genera [20]. As an example, several of
the genera wherein worker polymorphism evolved, such as
the leaf-cutting ants (i.e.Atta), carpenter ants (i.e.Camponotus),
army ants (i.e. Eciton), fire ants (i.e. Solenopsis) and big-headed
ants (e.g. Pheidole), comprise species with larger colony sizes
(thousands to millions of ants within a colony), dramatic mor-
phological differences between workers in the colony and
enhanced division of labour [5]. Many of these same species
have strong effects on the structure of food webs and ecosys-
tems as dominant predators, herbivores and ecosystem
engineers [21]. In addition, morphologically diverse ant
species have often been argued to have enhanced cooperation
and division of labour and a higher propensity for ecological
and evolutionary dominance [12,13,22–24]. For these reasons,
the ecology, evolution and development of worker poly-
morphism in ants have been extensively studied in a select
set of species and in a few regions of the world [11,13,23,25].
Yet, it remains unclear where in the world one is more likely
to encounter a polymorphic ant colony, and whether abiotic
conditions are associated with such superorganism complex-
ity. Some have suggested that polymorphism might be more
common in tropical regions [26], but this hypothesis is largely
anecdotal. To our knowledge, no other hypotheses predicting
howworker polymorphism is geographically distributed have
been proposed.
Owing to the current lack of process-based hypotheses,
we aim to generate the first global map of the geography of
worker polymorphism and assess the influence of the abio-
tic environment on this pattern. Specifically, we investigate
the drivers of the global geography of ant worker poly-
morphism (superorganism complexity) using a dataset
including 8990 ant species and 256 754 spatial occurrences.
We first identify global hotspots of superorganisms com-
plexity defined as climatic zones where the probability of
encountering a worker polymorphic ant colony is greatest
relative to the total number of ant colonies and ant species
recorded in the region. To do this, we model each occur-
rence data point as representing an ant colony that is
either polymorphic or monomorphic. Then, we compare
model fit in a series of linear models relating the pres-
ence/absence of polymorphism in an ant colony to
ambient climatic conditions. In addition, because the prob-
ability of encountering a polymorphic ant colony is highest
where the total number of ant colonies (sampling effort)
and species (species richness (SR)) is highest by chance
alone, we ran a series of models aimed at evaluating the
influence of these covariates on model selection. We present
our results and focus the discussion on models that account
for differences in sampling effort and SR, which helps us
identify climatic zones that are dominated by complex
superorganisms.
2. Methods
(a) Identifying polymorphism
We reviewed the literature and classified 15 518 species of ants as
either ‘polymorphic’ according to a broad definition of worker
polymorphism or as ‘monomorphic’ (electronic supplementary
material, tables S1 and S2). Species lacking significant size or
allometric variation in the worker caste were classified as mono-
morphic, whereas all others were classified as polymorphic (see
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electronic supplementary material, figure S1 for more details). To
classify ant species as polymorphic or monomorphic, we first
systematically searched AntWiki [27] and AntWeb [28], two
open-access repositories curated by myrmecologists that collate
information and list studies on each ant species, for relevant lit-
erature. These databases were chosen because resources are
easily accessible and the taxonomic upkeep of the species
pages is consistent [27,28]. Using the primary literature cited
on these pages, we searched for explicit mention of the terms
monomorphic, polymorphic or any of the categories of poly-
morphism defined by Wilson [13]. When multiple sources were
available for a given species, we used the most recent article.

Species were considered to be polymorphic if the primary lit-
erature reported any type of interindividual variation in size and
head-to-body allometry, from monophasic allometry (continuous
morphological variation) to di- or even trimorphic allometry
(discrete morphological variation; see electronic supplementary
material, figure S1 for more details). If species-specific references
were not found in AntWiki or AntWeb, we used the scientific
name of the species in Google Scholar to find up-to-date sources.
When there was no published information on polymorphism for
a given species, we assigned the same category of polymorphism
to all species within a genus based on Bolton’s [29] classification.
A similar approach was used in a recent study [20]. If peer-
reviewed genus-specific references were available [30–34],
their classification was favoured over that of Bolton [29].
Species-specific information on polymorphism was available
for 20% of the species used in our analyses (1826/8990). When
only considering polymorphic species, 68% of the species
included in the analyses (1636/2408) were classified with
species-level information.

Classification of ant species as either monomorphic or mono-
phasic is most challenging and could possibly bias our result.
Some monophasic species are considered polymorphic by some
and monomorphic by others [25]. However, monophasic species
represent less than 1% of all species in our data and therefore
unlikely to affect our results. In the current study, we classified
monophasic species as polymorphic.
(b) Compiling occurrence data
We used the species occurrence data from the Global Ant Biodi-
versity Informatics database [35]. This occurrence database is a
synthesis of data from published literature (approx. 10 000 publi-
cations), as well as from online, open-source databases, museum
records (including 87 online open-source databases, such as
AntWeb) and personal collection databases. The taxonomy of
legacy records is placed in a common framework and continu-
ously updated with new data. It also includes records extracted
from 87 online, open-source databases, such as AntWeb, as
well as museum records. Species name validity is being checked
for each record and follows the Bolton Catalogue available from
AntCat.org. Species identification errors are corrected on the
basis of taxonomic revisions and biodiversity literature (e.g.
species checklist), contact with experts and direct decisions
based on biogeographic knowledge. We extracted all spatially
validated occurrence points from the database (accessed in
May 2018) and after excluding occurrence data from oceanic
islands, we retained 256 754 points matching 8990 ant species
for our analyses.

Sampling effort (i.e. the number of occurrences in a grid cell)
has an influence on estimates of SR (i.e. the number of species
detected in a grid cell) and therefore on the probability of detect-
ing a polymorphic ant colony (see electronic supplementary
material, figure S2 for maps of sampling effort and SR). To
avoid the bias produced from differences in sampling intensity
and SR among different regions of the world, we divided the
world into grid cells and use grid cell (SiteID) and SR as
covariates in some of our models. Specifically, we divided the
world into 1° latitude × 1° longitude grid cells, and all occurrence
points falling within a given grid cell were attributed that grid
cell ID. Note that including grid cell as a random effect also
accounts for the non-independence of spatially aggregated data
points. Similarly, the number of species detected in a grid cell
were used as estimated of SR.

(c) Modelling the occurrence of worker polymorphism
along climatic gradients

To assess how the probability of encountering a polymorphic ant
species varies along global climatic gradients, we constructed a
series of models that related temperature and precipitation to
the presence/absence of polymorphism in an ant colony. Here,
we assumed that each occurrence data point was associated
with a given ant colony, since at least one worker ant from at
least one colony was found at that location. Mean annual temp-
erature and mean annual precipitation for each occurrence data
point were extracted from WorldClim v1.0 [36] using the raster
package in R [37]. We assessed the influence of temperature
and precipitation jointly and separately on the occurrence of
polymorphism by performing a series of generalized linear
mixed models (hereafter referred to as GLMMs) assuming a
binomial distribution. The binary response variable for our
GLMMs was the point occurrence of polymorphism, coded as
‘1’, or absence of polymorphism, coded as ‘0’, in our database.
In other words, we assigned to each of the 256 754 ant occurrence
points either a ‘1’ or a ‘0’, depending on whether they rep-
resented a polymorphic ant colony or not. We then examined a
distinct set of models consisting of various combinations of
temperature (linear and quadratic) and precipitation (linear and
quadratic), as well as a null model. The full configuration of
our GLMMs is described in electronic supplementary material,
table S3.

(d) Sensitivity analyses
Among grid cell differences in sampling effort and SR could bias
the results of our analyses. Indeed, both the number of occur-
rence data points or colonies (i.e. sampling effort) and the total
number of monomorphic and polymorphic species (i.e. SR)
vary among grid cells (electronic supplementary material,
figure S2). To assess the influence of SR on model selection,
regardless of sampling effort, we ran a second set of analyses
wherein the grid cell’s SR (polymorphic +monomorphic species)
was modelled as a fixed effect. To assess the simultaneous influ-
ence of sampling effort and SR on model selection, we ran a third
set of analyses wherein a latent variable (i.e. SiteID) was
modelled as a random effect. We also assessed the influence of
using an equal area projection on our model selection. GLMMs
were run using the lme4 package in R [38].

(e) Taxon-specific analyses
To assess whether our best models were consistent among taxo-
nomic groups, we tested them separately on each ant
subfamilies. Specifically, we took the three best models from
this first all-taxa analysis and ran them separately on each ant
subfamily subsets of our global dataset. Note that nine subfami-
lies were excluded from taxon-specific analyses due to data
insufficiency, which hampered model convergence. Data insuffi-
ciency prevented taxon-specific analyses at the level of ant genera
because models failed to converge in a majority of genera. We
selected best fit models based on the Akaike Information Cri-
terion (hereafter referred to as AIC), choosing the model with
the lowest AIC as the best model [39,40]. For a model to be
selected and be considered a significantly better model, it
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Figure 2. Global map showing geographical variation in the probability of encountering a polymorphic ant colony. Dark red grid cells indicate areas where the
probability of encountering a polymorphic ant colony is high, whereas light yellow grid cells indicate areas where such probability is low. (Online version in colour.)
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needed to be at least 2 units lower than the second lowest AIC
[39]. All statistical analyses were carried out using the R statisti-
cal software (R Core Team, version 3.5.0).

To ensure that explanatory variables were not collinear, a var-
iance inflation factor between temperature and precipitation was
calculated. To do this, we used the usdm package in R and found
that the variance inflation factor was 1.48 indicating little colli-
nearity; thus, both variables could be included in our models
[41]. We also verified whether they were over-dispersed as this
could lead to inaccurate estimation of relationships between vari-
ables. We found that overdispersion in these models was less
than 1, indicating very little over dispersion and proceeded
with the model selection procedure.
( f ) Phylogenetic analyses
One way to account for phylogenetic effects in our analyses
would be to perform a phylogenetic correction at the species
level [42]. However, the only comprehensive, time-calibrated,
molecular phylogenies currently available for ants are at the
genus level, whereas a complete species-level phylogeny that
includes species we analyze in this study is not available. We
therefore assessed the degree of phylogenetic signal in worker
polymorphism at the genus level using the Abouheif test [43]
from the adephylo package [44] with a genus-level molecular phy-
logeny of ants [20]. A genus was considered polymorphic if it
was comprised of more than 50% polymorphic species [20].
3. Results
Our data show that worker polymorphism occurs in approxi-
mately 29% of all ant species, which is a much larger number
of worker polymorphic ant lineages than previously thought
(electronic supplementary material, tables S1 and S2)
[10,20,29]. Specifically, 4732 of the 15 518 species in our data-
base are polymorphic (i.e. ranging from monophasic to
trimorphic allometry; electronic supplementary material,
table S1 and figure S1), which is double the previous estimate
of 13% [20,29]. Using a threshold of greater than 50% of
species within the genus being polymorphic, we found that
85 (25%) of the 337 ant genera are polymorphic (electronic
supplementary material, table S2). Taken together, our results
indicate that many lineages possess the developmental
capacity to generate substantial variation in size and/or
head-to-body scaling between individuals within a single
colony [20,45,46].

To estimate the probability of worker polymorphism, we
assessed the relationship between the probability of poly-
morphism and climate. We discovered that the probability
of polymorphism is highest in arid regions of the world
(figure 2). Specifically, the model with the lowest AIC was
one including a positive linear term for temperature, a nega-
tive linear term for precipitation and a quadratic term for
precipitation (tables 1 and 2; electronic supplementary
material, table S4). The probability of encountering a poly-
morphic species is therefore highest in the warmest regions
and very dry regions of the world (electronic supplementary
material, figures S3 and S5). We also conducted sensitivity
analyses to assess the influence of (i) sampling effort
(SiteID as random effect) and (ii) SR (as fixed effect) on
model selection (electronic supplementary material, tables
S4 and S5) and (iii) the influence of using an equal area
grid cell projection on our model selection (electronic sup-
plementary material, table S6). Our results were robust to
all sensitivity analyses. Finally, as a post hoc analysis, we
used the model with the random effect to predict the prob-
ability of polymorphism among climatic zones (i.e. biomes)
of the world (figure 3). Using this model, the probability of
encountering a polymorphic ant colony is highest in arid
regions around the world including deserts and tropical
savannahs (figure 3).

Finally, we assessed the potential influence of evolution-
ary history on the global distribution of polymorphism. We
first compared model fit separately for each subfamily. We
found that seven of the eight subfamilies show that poly-
morphism is positively related with temperature, while for
five of the eight subfamilies, it is negatively related with
precipitation (table 3; electronic supplementary material,
table S7). Furthermore, we quantified phylogenetic signal
across 306 ant genera and found that closely related genera
are no more likely to be polymorphic than distantly related
ones (electronic supplementary material, table S8). This is
consistent with the fact that polymorphism evolved several
times independently in specific genera. Together, these ana-
lyses show that the global distribution of polymorphism is
not a consequence of differences in the evolutionary history
of subfamilies and genera. However, there may be an effect
of the evolutionary history of species within genera. A large
majority of polymorphic species are in the hyper-diverse
genera Camponotus and Pheidole. However, these genera are
present and diverse in almost all biomes of the world (elec-
tronic supplementary material, figure S6), suggesting that
the distributions of these genera do not have a disproportion-
ate influence on the global geography of polymorphism. The
genus Cephalotes appears to be the third most diverse poly-
morphic genera in tropical dry forests and savannahs, while
the genera Myrmecosystus, Messor and Cataglyphis comprise



Table 1. Results of model selection for the generalized linear mixed models for probability of encountering a polymorphic species at the global scale. Models
are sorted from best fit (lowest AIC) to worst fit (highest AIC). The best fit model is indicated in bold. SiteID was modelled as a random effect.

variables AIC ΔAIC AIC

precipitation2 + precipitation + temperature 295 509.5 0.00 0.99

precipitation + temperature 295 520.9 11.36 0.00

precipitation × temperature 295 522.3 12.79 0.00

temperature2 + temperature 295 765.3 255.81 0.00

temperature 295 804.7 295.23 0.00

precipitation2 + precipitation 295 921.0 411.54 0.00

precipitation 295 932.2 422.65 0.00

1 296 040.5 530.96 0.00

Table 2. Parameter estimates for the two best models selected based on AIC comparisons. The random effect was site ID.

predictors

precipitation2 + precipitation + temperature precipitation × temperature

estimate odds ratios CI p estimate odds ratios CI p

(intercept) −1.76 0.17 0.15–0.19 <0.001 −1.79 0.17 0.15–0.18 <0.001

precipitation −3.16 0.04 0.03–0.05 <0.001 −2.63 0.07 0.06–0.09 <0.001

precipitation2 2.19 9.00 6.59–12.29 <0.001

temperature 1.70 5.53 4.78–6.38 <0.001 1.63 5.15 4.45–5.96 <0.001

temperature × precipitation 0.67 1.96 1.50–2.57 <0.001

σ2 3.29 3.29

τ00 0.47 0.48

Intra Class Correlation 0.13 0.13

n 4349 4349

observations 256 754 256 754

marginal R2/conditional R2 0.017/0.140 0.018/0.143
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a large proportion of polymorphic species in deserts and
scrublands. Therefore, these genera, which evolved worker
polymorphism independently, contribute substantially to
the peak in polymorphism in arid regions.
4. Discussion
Our results show that complex superorganisms are overre-
presented in the warmest and most arid regions of the
world, which typically harbour fewer ant species [47,48].
Specifically, the probability of encountering worker poly-
morphic colonies peak in tropical dry forests, savannahs
and deserts. Although the processes underpinning the for-
mation and maintenance of these organismic complexity
hotspots remain enigmatic [8,9,11,23,49], this first outlook
into the geography of ant worker polymorphism provides
novel insights that will guide future research.

Arid systems emerge as hotspots of complex superorganisms
(figures 2 and 3). These results show that worker poly-
morphic ant colonies are most common in warm and dry
regions of the world. There are several hypotheses that may
explain why polymorphic ants dominate arid systems. One
possibility is that worker polymorphism in arid regions is
not adaptive, but rather a consequence of evolutionary and
biogeographic history. In this scenario, the current geographi-
cal distribution of worker polymorphism in particular
lineages reflects that of their ancestors. However, our assess-
ment of historical effects on the over-representation of
worker polymorphism in arid environments suggests that
these effects are negligeable. Furthermore, some of the most
diversified and polymorphic ant genera in arid systems
(e.g. Camponotus, Pheidole, Cephalotes, Cataglyphis, Messor)
are not closely related and evolved independently, perhaps
through convergent evolution mediated by strong selection
pressure in these stressful environments [20,23]. It is likely
that worker polymorphism enables persistence in extremely
hot and resource-scarce environments. This is not to say
that worker polymorphism originated in such environments
but that it provides fitness advantages or permit survival in
such environments.

The over-representation of polymorphic ants in arid
regions of the world thus implies that phenotypic complexity
enables persistence in these stressful environments. First,
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Figure 3. Variation in the probability of encountering a polymorphic ant colony among the world’s biomes and along climatic gradients. Predicted values were
obtained from a model accounting for variation in the number of ant colonies (sampling effort) recorded in a grid cell. (a) Global map of the world’s biomes, where
each colour represents a different biome (numbered 1–13), and each black dot is an occurrence data point (include polymorphic and non-polymorphic occurrences).
(b) Average predicted polymorphism per biome, and (c) predicted occurrence of highest level of polymorphism along global temperature and precipitation gradients.
(Online version in colour.)

Table 3. Results of model selection for the generalized linear mixed models for the global distribution of worker caste polymorphism by subfamily of ants. All
models included site ID as a random effect. The bolded AICs represent the lowest AIC (i.e. best model) for the global distribution of worker polymorphism.
Subfamilies with insufficient data for model convergence are excluded.

subfamily
precipitation +
temperature

precipitation2 + precipitation +
temperature

precipitation ×
temperature temperature

Amblyoponinae 2352.91 2355.19 2378.73 2352.91

Dolichoderinae 25 860.42 25 802.62 25 798.94 25 939.77

Dorylinae 3725.25 3726.68 3721.56 3723.59

Formicinae 71 456.18 71 428.20 71 449.56 71 887.28

Myrmeciinae 1441.20 1433.01 1443.20 1450.77

Myrmicinae 134 471.40 134 464.23 134 470.79 134 473.86

Ponerinae 2896.62 2898.62 2887.76 2925.04

Pseudomyrmecinae 300.85 301.80 302.86 305.91
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there might be size-related differences in the diet of ant
workers within a colony. Arid ecosystems are numerically
dominated by ants that specialize in the harvesting of
seeds. Such diet specialization may only be possible, or opti-
mized, if colonies can exploit a wide array of seed size and
shapes [50]. Large workers of several seed harvester ants,
for example, are known to specialize on larger food items
than do smaller ants within the colony [51]. Added to the
fact that deserts and savannahs are resource-limited and
unpredictable, polymorphism might allow more efficient
exploitation of specific and limited seed resources [52].
Second, there might be size-related differences in the thermal
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and drought tolerance of workers within ant colonies [53].
A few studies have shown that such differences exist, where
larger workers within the colony forage at midday when
temperature is at its peak and smaller worker forage when
temperature cools down [54]. Moreover, in at least two
species belonging to two different genera (i.e. Cataglyphis
and Messor), size-related differences in the foraging schedule
of workers correspond with higher tolerance to extreme
temperature and to desiccation [54,55]. In sum, evidence for
the hypothesis that worker polymorphism promotes persist-
ence in arid environment is generally sparse and
anectodical for the moment being, but our results provide
additional incentive to test its generality.

Our findings further suggest that more generally, warm
temperature is a key factor influencing the occurrence of com-
plex superorganisms across the globe. One hypothesis to
explain this trend is that warm temperatures promote
worker polymorphism by shaping the biotic environment
outside the colony. Many claim that biotic interactions are
more intense in warm climates [56], which might favour the
polymorphic phenotype, and in particular large workers
involved in colony defence, through selection and social
regulation [57,58]. Consistent with this hypothesis, ecological
specialization, driven by intense resource competition,
explains the evolution of polymorphism within at least two
polymorphic genera [52,59,60]. Another hypothesis is that
ecological factors such as diet and nutrition, which maybe
more rich and abundant in warm regions, can also interact
with developmental pathways and lead to the evolution of
a greater diversity of phenotypes within the worker caste of
an ant colony [17,61]. Worker polymorphism is a social trait
mediating resource exploitation, resource monopolization
and colony defence, both directly and indirectly affecting
energy acquisition by a colony. In tropical environments,
for example, resources are abundant, but competition is
intense, which calls for efficient exploitation strategy includ-
ing diet specialization and resource defence, both of which
might relate to worker morphological complexity [56,62,63].
Polymorphism may have evolved to better defend space or
more efficiently acquire resources [59,64].

We hope our findings will facilitate our understanding of
the relative contributions of developmental processes, social
behaviour and the ecological environment in shaping spatial
variation in the expression of phenotypic complexity, which
will be the key to elucidating the geography of organismic
and super-organismic complexity [17,45,46,52,59,60,64–68].
Looking forward, we need to develop standardized and
repeatable quantitative approaches to compare the degree
of phenotypic complexity within and across species, which
would allow stronger comparative studies in macroecology
and macroevolution. As a first step, worker polymorphism
can be quantified by relating head width (y-axis) to body
length (x-axis) for individual workers within a single
colony [45]. Rigorous tests of hypotheses regarding the distri-
bution and evolution of phenotypic complexity could then be
tested on solitary multicellular organisms as well as on super-
organisms. Complexity can be defined and quantified across
hierarchical levels of complexity, from genomic to cellular to
phenotypic complexity. To accomplish this in eusocial
insects, we also need to create comprehensive databases for
other traits associated with superorganism complexity,
namely colony size, reproductive division of labour and the
number and degree of partitioning of behaviorial tasks
[5,18]. Finally, whereas we investigated the two main axes
of climatic variation on Earth (i.e. temperature and precipi-
tation), which are typically used to define climatic zones,
future work could investigate the influence of seasonality or
climatic predictability, which could also play a role in the geo-
graphical distribution of polymorphism. The present study
nevertheless represents an important first step in furthering
our understanding of what facilitates and what restricts the
global distribution of phenotypic complexity.

Finally, warm, and in particular arid, regions of the world
harbour the greatest density of complex superorganism,
which has intriguing implications in the context of climate
change. Ongoing climate change leads to the aridification of
many of the world’s ecosystems, increasing the frequency
and intensity of fires and drought events, which threatens
biological diversity [69–72]. On the other hand, our findings
suggest that ecosystem aridifications favour the survival of
highly complex superorganisms, which often play crucial
roles in decomposition and nutrient cycling, among other
things [73]. The plasticity conferred to polymorphic species
could also help them cope with changing abiotic and biotic
conditions amid global changes. Moreover, if arid systems
are hotspots of phenotypic complexity and potentially epi-
centres of morphological evolution and innovation in
eusocial insects, then the biodiversity climate crisis may
either promote further phenotypic innovation if they can
adapt or drive our most complex superorganisms to extinc-
tion if they cannot. A look at the biodiversity crisis through
the lenses of phenotypic complexity, a neglected dimension
of biological diversity, could help identify and protect some
of the world’s hidden evolutionary centres.
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