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Urbanization transforms environments in ways that alter biological evolution. We examined whether
urban environmental change drives parallel evolution by sampling 110,019 white clover plants from
6169 populations in 160 cities globally. Plants were assayed for a Mendelian antiherbivore defense that
also affects tolerance to abiotic stressors. Urban-rural gradients were associated with the evolution
of clines in defense in 47% of cities throughout the world. Variation in the strength of clines was
explained by environmental changes in drought stress and vegetation cover that varied among cities.
Sequencing 2074 genomes from 26 cities revealed that the evolution of urban-rural clines was best
explained by adaptive evolution, but the degree of parallel adaptation varied among cities. Our results
demonstrate that urbanization leads to adaptation at a global scale.

U
rbanization is a driver of both envi-
ronmental and evolutionary change.
Towns and cities are rapidly expand-
ing throughout the world to accommo-
date human population growth. These

urban areas represent novel ecosystems, in
which urban development alters multiple
environmental factors (1). Recent research

shows that urban environmental change can
influence four evolutionary processes: muta-
tion, genetic drift, gene flow, and adaptation
due to natural selection (2, 3). Despite numer-
ous examples of how urbanization affects
genetic drift and gene flow (4, 5), the effects
of urbanization on adaptive evolution have
received less attention (6–8). Adaptation to

urban environments can affect species’ con-
servation (9), the spread of pests and disease
(2), and eco-evolutionary feedbacks (10), as
well as urban planning and human society
(11). However, the few examples of adapta-
tion to urban environments focus on just one
or a small number of cities in a single region
(2). It is therefore unclear whether popula-
tions can adapt to urban habitats in similar
ways across cities throughout the world.
Parallel adaptive evolution is most likely

when populations experience similar environ-
mental selective pressures on the same genes
or phenotypes (12, 13). For urbanization to
drive parallel evolution, urban areas must
converge in environmental features that affect
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an organism’s fitness. Urbanization can lead to
similar environmental changes across cities
(14), but whether urban environmental con-
vergence causes parallel evolution has never
been examined at a global scale.
Herewe test howglobal urbanization affects

environmental change and evolution in a cos-
mopolitan plant species, white clover (Trifolium
repensL., Fabaceae). White clover populations
are polymorphic for the production of hydro-
gen cyanide (HCN), an antiherbivore chemi-
cal defense controlled by two genes (15). At
least one functional allele at each of two un-
linked loci (Ac and Li) is required to produce
HCN following tissue damage, whereas plants
that are homozygous for gene deletions (ac
and li alleles) at either locus lack HCN (16, 17).
Notably, these deletions occur throughout the
world, resulting in standing genetic variation
on which selection can act (18). Previous work
showed that herbivores select for the produc-
tion of HCN, and abiotic stressors (e.g., freezing
anddrought) influence the costs and benefits of
the metabolic components underlying the de-
fense (19, 20). Variation in these environmental
factors is credited with driving the evolution of
clines in HCN production at continental and
regional scales (21, 22), including in response to
urban environments (23–25). Thus, HCN pro-
duction could evolve in response to urbanization
if there are urban-rural gradients in herbivory,
winter temperature, or drought.
We examined global urban environmental

and evolutionary change across the diverse cli-
mates that white clover inhabits. To this end,
we created the Global Urban Evolution Project

to test for parallel evolution and urban adapta-
tion in natural populations across white clover’s
worldwide range. The present study builds on
our previous work on white clover (23–25) by
sampling cities globally across diverse climates
in both the native (Europe and western Asia)
and introduced ranges, by quantifying many
environmental factors from each population
and by integrating evolutionary genomic analy-
ses using whole-genome sequence data. This
project spanned 160 cities across 26 countries
(Fig. 1) (15) in white clover’s native and intro-
duced ranges (Fig. 1 and fig. S1). From these
cities, we phenotyped 110,019 plants from6169
sampling sites (hereafter “populations,” table
S1). Populations within each city were sampled
along anurban-rural transect,with half of each
transect in urban and suburban areas (i.e., areas
with high building density) and the other half
in rural areas (Fig. 2, E to G) (15).
Across 160 cities, we tested whether urban

white clover habitats converged to be more sim-
ilar among cities and less variable within cities
in their environmental characteristics com-
pared to rural habitats (15). Urban and rural
habitats significantly diverged (MANOVA H0:
urbanmean = ruralmean, Pbootstrapped < 0.01,
Fig. 2A) along two principal-component axes
that accounted for 65% of the variation in
the multivariate environments between the
two habitats across cities. Urban locations con-
sistently hadmore impervious surface, higher
summer temperatures, and less vegetation than
rural populations (Fig. 2B and fig. S2). The
remaining environmental variables changed
along urban-rural gradients inmany cities, but

these changes were less consistent in direction
among cities (fig. S2 and table S2). Although
urban and rural environments diverged on av-
erage, urban-rural changes in the environment
were not always parallel (MANOVAH0: parallel
urban-rural changes among cities,Pbootstrapped <
0.01, Fig. 2A). Additionally, environmental
variance among urban populations within a
city was lower than the environmental vari-
ance among rural populations (F9,1570 = 31.76,
P < 0.001, fig. S3). Together these results show
that on average, urbanization leads to similar
and less-variable environmental conditions in
some factors (e.g., impervious surface, summer
temperature, summer vegetation) but not in
others (e.g., potential evapotranspiration, snow
cover, winter vegetation), which could lead to
variation in the degree of parallel evolution.
We next tested whether convergent urban

environmental change causes parallel evolu-
tion in an ecologically important trait of white
clover. We examined evolution in response
to urbanization by testing for a relationship
between HCN production and distance to the
urban center (i.e., an “HCN cline”), as well as
other metrics of urbanization (15). Our model
explained 28% of the variation in the fre-
quency of HCN production within popula-
tions (table S3). Across 160 cities, distance
from the city center was positively related to
the frequency of HCN-producing plants (dis-
tance: c2df¼1 = 12.35, P < 0.001). The probability
that a plant produced HCN increased by 44%
on average from the center of an urban area to
the furthest rural population (Fig. 2C, D). How-
ever, cities varied in the strength and direction

Santangelo et al., Science 375, 1275–1281 (2022) 18 March 2022 2 of 7

Fig. 1. Cities sampled for urban environmental and evolutionary change. Blue dots indicate cities with positive clines for hydrogen cyanide (HCN) production
along urban-rural gradients (HCNurban < HCNrural). Red dots show negative clines (HCNurban > HCNrural). Gray dots indicate cities without a cline. Plants from
the 26 cities outlined in black underwent whole-genome sequencing. Inset: White clover and a honey bee.
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of clines (distance� city interaction: c2df¼1=
1001, P < 0.001; Fig. 2, C and D). Overall, 47% of
cities exhibited a significant (P < 0.05) cline
(15), with 39% of cities (62 of 160) showing a

positive cline in which HCN production was
less common in urban than rural populations,
and 8% of cities (13 of 160) had negative clines
(Fig. 2 and table S4). Positive and negative

clines occurred in both the native and intro-
duced ranges, with the former being more
prevalent among continents and across diverse
climates (Fig. 1).
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Fig. 2. Urban environmental
and evolutionary change
across cities. (A) Principal
component analysis showing
environmental differences
between urban (orange dots)
and rural (green dots) hab-
itats; ovals represent 95%
confidence interval (CI).
Lines connect urban and
rural habitats from the same
city. (B) The eigenvectors for
environmental variables,
colored according to their
contribution to PC2. The
environmental variables
included vegetation in winter
(NDVIwinter) and summer
(NDVIsummer), snow accumu-
lation (NDSI), surface tem-
perature in winter (LSTwinter)
and summer (LSTsummer),
aridity index (AI), potential
evapotranspiration (PET),
impervious surface (GMIS),
and elevation (DEM).
(C) Histogram of the slopes
from binomial regressions of
the relationship between
HCN production within pop-
ulations and distance from
the city center. Distance
was standardized to vary
between 0 (urban center) and
1 (furthest rural population)
in each city, so that cities that
varied in size were compared
on the same scale. The dashed
vertical line corresponds to
the mean slope across cities,
and overlap between bars
showing cities with signifi-
cant (blue and red) and
nonsignificant clines (grey) is
shown as muted colors.
(D) The relationship between
HCN production within pop-
ulations and distance for
each city; colors correspond
to those in (C). The black line
shows the positive main
effect of distance across cities
(P < 0.001). (E to G) Exam-
ples of transects, with
the orange lines showing
the urban boundary, and pie
charts (jittered to reduce
overlap) showing the propor-
tion of HCN+ plants colored in yellow. (H to J) Frequency of HCN production versus distance for the cities shown in (E) to (G). The line shows the regression line ± 95% CI.
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Given the prevalence of HCN clines at a
global scale, we sought to identify the evolu-
tionary processes driving variation in the
strength and direction of clines. In addition
to natural selection, nonadaptive evolution
can lead to the evolution of clines (26). No-
tably, the epistatic genetic architecture ofHCN

production makes the loss of the trait more
likely with increased genetic drift (26). There-
fore, the prevalence of positive clines could re-
flect stronger drift in urban populations (4, 5).
To examine whether urban populations exhib-
ited stronger drift, we estimated pairwise nu-
cleotide diversity (p) of putatively neutral sites

using whole-genome sequence data from ~80
individuals per city, with samples equally split
between urban and rural habitats across 26
cities (N= 2,074) (15). These cities were selected
to capture variation in the strength and direction
of clines, geography, and climate (Fig. 1) (15).
Genetic diversity was not consistently dif-

ferent between urban and rural habitats and
did not explain variation in the slope of HCN
clines along urban-rural gradients. On aver-
age, urban and rural habitats did not differ in
neutral genetic diversity (F1, 25 = 0.028, P =
0.87; Fig. 3A). Furthermore, the difference in p
between urban and rural habitats within a city
was not strongly related to the slope of HCN
clines (F1, 24 = 0.25, P = 0.62; Fig. 3B and fig.
S4), and urban-rural differences in genetic di-
versity were similar between cities with and
without clines (F1, 24 = 0.017, P = 0.90).
Variation in the strength of genetic differ-

entiation and gene flow between urban and
rural habitats can influence the ability of pop-
ulations to adapt to urban environments (27).
To test the association between genetic differ-
entiation and the evolution of HCN clines, we
estimated population genetic differentiation
between urban and rural populations using
both FST and principal components analysis
(PCA) (fig. S5), in addition to urban-rural ad-
mixture (fig. S6) (15). Urban-rural FST was low
[mean = 0.012 ± 0.002 (SE)] and did not differ
significantly between cities with and with-
out clines (F1, 24 = 1.47,P= 0.24; Fig. 3C and fig.
S4). Neither FST (F1, 24 = 1.42, P = 0.25; Fig. 3D)
nor urban-rural differentiationmeasured using
PCA (F1, 24 = 1.10, P = 0.31, fig. S5) predicted the
strength of clines in HCN production. The ab-
sence of strong differentiation was associated
with extensive admixture between urban and
rural populations (fig. S6). Because genetic dif-
ferentiation is consistently low and gene flow
appears to be high among urban and rural pop-
ulations, the repeated evolution of clines sug-
gests strong selection onHCNproduction along
urban-rural gradients. This conclusion is fur-
ther supported by direct tests of selection on
theAc and Li loci, as well asHCNproduction, in
which differentiation (using a statistic equiv-
alent to FST) between urban and rural popula-
tions was stronger than expected under neutral
evolution in cities with HCN clines compared
to cities without clines (Fig. 3, E and F) (15).
Multiple environmental stressors are known

to influence the evolution of HCN production
at continental scales (20–22, 28), so we asked:
What environmental factors explain varia-
tion in the evolution of HCN production along
urban-rural gradients? Environmental factors
related to drought and vegetation cover were
the strongest predictors of variation in HCN
clines, accounting for 11.3% of the variation
in the strength of clines (tables S5 and S6).
Change in potential evapotranspiration (PET)
along urban-rural gradients was one of the
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Fig. 3. Genetic diversity and differentiation within and between urban and rural habitats. (A) Mean
(± SE) pairwise nucleotide diversity (p) for urban (orange) and rural (green) plants across cities. (B) The
relationship between the slope of HCN clines versus the difference in nucleotide diversity between
habitats, where each point is a city. (C) Histogram showing the distribution of genetic differentiation
(FST) between urban and rural habitats for each city, colored with respect to the significance of HCN clines.
(D) Relationship between the absolute value of the slope of HCN clines versus FST. (E) Percentage of
cities in which differentiation between urban and rural habitats at Ac or Li exceeds neutral expectation in
cities with or without significant HCN clines (15). (F) Percentage of cities with differentiation in HCN
production between urban and rural habitats that exceeds neutral expectation in cities with or without

significant HCN clines (15). P values in (E) and (F) correspond to c2 test for independence.
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most consistent predictors of evolution in HCN
production (table S5); the frequency of HCN
production tended to be higher in rural than
urban populations in cities where PETwas also
greater in rural habitats (Fig. 4, A and C, and
fig. S7). Because high PET can lead to plant
water stress under low soil moisture, this re-
sult is consistent with drought selecting for
higherHCNproduction, a pattern also observed
at continental scales (21). However, the effect of
PET on the evolution of HCN production only
occurs when the amount of vegetation in and
around cities is low (Fig. 4A). When vegeta-
tion cover is relatively high (and impervious
surface is low) along the whole urban-rural
transect, HCN clines tend to be positive re-
gardless of variation in PET (Fig. 4, A to C).
Notably, the amount of vegetation is posi-
tively correlated with invertebrate herbivore
biomass and diversity (29), which can select
for increased HCN production (20). When
combined with the observation that herbi-
vores are often less abundant in urban habitats
(30), our evidence suggests that herbivores
are selecting for greater HCN production in
rural than urban areas. The positive associ-
ation between urban-rural changes in vege-
tation and the positive slope of HCN clines

in some cities further supports this interpre-
tation (Fig. 4D). Put simply, herbivory seems
to select for higher HCN production in rural
areas, but in the absence of strong herbivore
pressure (i.e., when there is less vegetation
across the whole gradient), drought is the
main selective agent. Contrary to previous find-
ings, urban-rural changes in temperature and
snow cover did not explain changes in HCN
production (24), suggesting that urban-rural
changes in these abiotic factors are not a gen-
eral explanation for the evolution of clines at
a global scale.
Our results have general implications for

understanding how environmental change
affects adaptation in widespread species. Par-
allel evolution is a hallmark of natural selection
because it suggests that adaptation proceeds
in a repeatable way when populations face sim-
ilar environments (12, 13). However, depar-
tures from parallel evolution are common,
and a major goal of recent research involves
quantifying how ecological and evolutionary
factors interact to influence variation in adapt-
ive responses to similar environments (12).
Our results show thatwhite clover rapidly adapts
to urban environments on a global scale, but
there is considerable variation in the strength

and direction of HCN clines that is driven by
variation in particular biotic and abiotic factors
that differ in how they change along urban-
rural gradients among cities. Variation in ad-
ditional unmeasured factors (e.g., gene flow
from agricultural varieties, pollution, etc.) might
further explain variation in the strength of
clines, and future work will seek to explore
such mechanisms.
Urbanization is increasingly transforming

rural and natural environments into unique
ecosystems that Earth’s biodiversity has never
experienced, and these changes are altering the
evolution of life. If adaptation to urban envi-
ronments is common, then this could have cas-
cading effects on populations and ecosystems.
This knowledge could help conserve some of
Earth’s most vulnerable species (9), mitigate
the impacts of pests (2), improve human well-
being (8, 11), and contribute to understanding
fundamental eco-evolutionary processes (10).
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Fig. 4. Environmental predictors of urban-rural clines in HCN production. (A) Change in potential
evapotranspiration along urban-rural gradients (PETb) interacts with the regional amount of summer vegetation
(i.e., NDVIsummer_mean) to explain variation in the slopes of HCN clines. (B) The relationship between the
slopes of HCN clines and the regional amount of winter vegetation (NDVIwinter_mean). (C) PETb interacts with
the regional amounts of impervious surface (GMISmean) to predict the slope of HCN clines. (D) Change in
summer vegetation along urban-rural gradients (NDVIsummer_b) interacts with regional aridity (AImean) to
explain variation in the slope of HCN clines. Acronyms as in Fig. 2.
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