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Pesticides have well-documented negative consequences to control crop
pests, and natural predators are alternatives and can provide an ecosystem
service as biological control agents. However, there remains considerable
uncertainty regarding whether such biological control can be a widely appli-
cable solution, especially given ongoing climatic variation and climate
change. Here, we performed a meta-analysis focused on field studies with
natural predators to explore broadly whether and how predators might con-
trol pests and in turn increase yield. We also contrasted across studies pest
suppression by a single and multiple predators and how climate influence
biological control. Predators reduced pest populations by 73% on average,
and increased crop yield by 25% on average. Surprisingly, the impact of pre-
dators did not depend on whether there were many or a single predator
species. Precipitation seasonality was a key climatic influence on biological
control: as seasonality increased, the impact of predators on pest populations
increased. Taken together, the positive contribution of predators in control-
ling pests and increasing yield, and the consistency of such responses in
the face of precipitation variability, suggest that biocontrol has the potential
to be an important part of pest management and increasing food supplies as
the planet precipitation patterns become increasingly variable.
1. Introduction
Food security and biodiversity conservation are intertwined challenges to sus-
tainable development [1,2]. Despite efforts to reduce hunger, approximately
670 million people will still be categorized as undernourished in 2030 [3].
Exacerbating this tragedy facing humanity is the fact that 32% (approx. 215
million tonnes) of the world’s major crop production (i.e. wheat, rice, maize,
potatoes and soya beans) is lost annually, with animal pests alone responsible
for approximately 10% of these losses (approx. 21 million tonnes) [4]. Resident
enemies (i.e. native species) can mitigate these losses by reducing pest popu-
lations, providing ecosystem services known as natural (without human
intervention) and conservation (with human intervention) biological control
[5]. However, the factors that mediate the effectiveness of resident enemies
acting as biological control agents are less understood. Maintaining the
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Table 1. Description of predictions, moderators and assumptions of the meta-analysis.

predictions moderators assumptions

(i) Predators will reduce populations of pests and

increase crop yield

none predators will exert top-down trophic cascades, due

to a high predation pressure on herbivores and by

indirectly releasing crops from herbivores [12,43]

(ii) The effect of multiple-species predators on

populations of pests will be higher than

single-species predators

categorical: predator diversity (i.e.

single-species or multiple-species

predators)

multiple predators can have higher variation of

functional traits than a single predator and

perform higher biological control via resource

partitioning, facilitation or positive selection effects

[15,18,21]

(iv) Temperature increases the negative effect of

predators on populations of pests and positive on

crop yield. Furthermore, temperature annual

range, aridity and precipitation seasonality

decreases the negative effect of predators on

populations of pests and positive on crop yield

continuous: mean annual

temperature, temperature annual

range, aridity and precipitation

seasonality

temperature increases metabolic activity and food

consumption rates [34,43]; predators are more

sensitivity to climatic instability (higher

temperature and precipitation seasonality)

[28,31,34]; predators are also generally more

sensitive to drought than their prey [29]

(v) Higher temperature and precipitation seasonality

affects positively biological control performed by

multiple-species predators and negatively biological

control performed by single-species predators

continuous: temperature annual

range and precipitation

seasonality

crops that have communities with multiple predator

species have a greater likelihood of having tolerant

predator species that perform biological control

even with climatic variability [22]
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diversity and impacts of resident enemies while enhancing crop yield is a key goal of balancing biodiversity conservation and
food security [6,7].

Resident enemies can have a positive [8,9], negative [10], or no [11] effect on populations of pests that attack crops. Moreover,
although trophic cascades in terrestrial systems are common [12,13], even when resident enemies reduce pest damage, their impacts
might not lead to increased yield in crops [14]. Exactlywhen, where, andwhy resident enemies provide biological control and enhance
crop production are still open and pressing questions [15–18]. Therefore, since biological control is recognized as an ecosystem service
[19,20], it is essential to understand the factors that influence the efficiency of predators in pest control and consequently on crop yield.

Predators are a key class of resident enemies and recent work has highlighted the effectiveness ofmultiple predators in suppressing
populations of pests [15,17,18,21], though their effectiveness likely depends on functional traits of both the predators (e.g. hunting
mode) and the pests (e.g. life stage), species identity, crop type and environmental heterogeneity (e.g. climatic variation) [15,22–26].
Put another way, the impacts of predators on populations of pests might be context dependent.

In fact, climate can influence trophic cascades and biological control in multiple ways. First, predators and pests might respond in
different ways to climate; predators are typically more sensitive to climate stressors, such as temperature and drought ([27–31], but
see [32,33]). However, predation is projected to increase as temperatures increase, but is expected to decrease as climatic variability
increases [34],with thepotential for complementary effects ofmultiple predator species in changing climates [35]. This evidence suggests
that impact ofbiological controlwill behigher in cropsystemsas temperature increases,whenother climatic conditions (e.g.precipitation)
remain stable. However, manymodels predict increasing variation in precipitation, but it remains an open question how these changes
might affect predator–prey interactions or the impacts of biocontrol on crop production [36–42].

To address these knowledge gaps, we performed ameta-analysis of 86 studies and 317 pairwise comparisons testing for the effect
of resident predators on populations of pests and/or yield in crop systems.We explored the effectiveness of resident predators to per-
form biological control among predator groups and crop types. Specifically, we examined: (i) the effect of resident predators on
populations of pests and crop yield; (ii) the effect of predator diversity (i.e. treatments with one and two or more predator species,
hereafter, single species andmultiple species, respectively) on populations of pests; (iii) whether natural and managed (conservation)
predator control differ in effects; (iv) the climate effects on the relationship between predators and populations of pests and crop yield;
and (v) the climate effects on the relationship between predator diversity and populations of pests (table 1). Overall, our study high-
lights that predators indirectly promote crop yield and provide a vital ecosystem service that might persist even in the face of ongoing
climatic change.
2. Material and methods
(a) Search strategy, selection of studies and data collection
We followed standard guidelines [44,45] to conduct this meta-analysis. We searched for primary studies (January 2021) that investigated the
effect of resident predators as biological control agents in crop systems in the two platforms, Web of Science Core collection (1945 to present)
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and Scopus, without restrictions on years of publication and languages. We use the following string of keywords, combined with Boolean
operators and using the ‘topic’ field in the Web of Science platform (i.e. ‘TS=’ field tag, which includes titles, keywords and abstracts): Bio-
control OR ‘Biological Control’ORPest NEAR/3Control ORPredatorNEAR/3 PreyANDAbundanceORDensityOR ‘Crop yield’OR ‘Crop
damage’OR ‘Seed set’OR ‘Fruit Development’OR ‘Fruit Production’ANDCrop ORCroplandORTillage ORCultivation OR Plantation OR
Garden. Additionally, we identified suitable studies used in earlier meta-analyses [8,9].

As a result of the search, we evaluated 5024manuscripts in four steps (see the prisma flowchart, electronic supplementarymaterial, figure
S1). First, we removed reviews and book chapters (n = 490) fromWeb of Science and Scopus. Then, we also removed duplicated manuscripts
(n = 81) from the different sources (i.e. Web of Science, Scopus and two earlier meta-analysis). Second, we read the titles and abstracts of 4453
manuscripts and excluded those that did not address the effect of resident predators on populations of pests and/or crop yield in crop sys-
tems. Here, we considered resident predators, resident predator groups that occur naturally in the study area (e.g. were not collected from
other regions and implanted in the study area to test biological control) and that provide pest control activities independently of any targeted
human intervention (natural biological control) andwith human intervention (e.g. the use of flower strips to provide additional resources for
predators) to improve biological control [5]. We also excluded studies with other biological control agents (e.g. parasites, parasitoids and
pathogens). Despite the importance of these other agents for biological control, as far as we know, the overall effect of resident predators
on populations of pests and crop yield and of possible moderators are less studied, especially in field studies (see [18], for example).
In the third step, we fully read 168 studies and excluded those that (i) did not measure the effect of resident predators on populations of
pests and/or crop yield comparing treatment with and without predators (e.g. using field cages, exclusion nets, cloth bags, acrylic resin
fences) and (ii) were not performed on crop systems (i.e. excluding studies performed in greenhouses and laboratories). However, it is impor-
tant to note that not all predator exclusion studies, for example using exclusion nets, guarantee that other predators (e.g. smaller species that
can pass through the exclusion nets) do not enter the system/plot. For a more detailed description of predator communities used in the pri-
mary studies and our inclusion criteria for predators’ exclusion studies see electronic supplementary material, text S1. After this stage, we
obtained 86 suitable studies to extract information. Furthermore, studies that performed different experiments (e.g. using different predator
species, crops and sites) were considered as individual pairwise comparisons of effect size (k).

To guarantee a standardized screening and extraction protocol among authors of this meta-analysis, we first selected 50 random
manuscripts to be compared among two authors (G.X.B. andT.G.-S.) that independently screening these 50manuscripts in a ‘training’ spread-
sheet. Then, we compared the decision (i.e. select or exclude themanuscript) and fixed potential issues in the decision criteria. After correcting
screening bias and answering all doubts from authors about the extracted data, we split the papers into two blocks that were extracted by two
authors (G.X.B. and T.G.-S.). After the end of this stage, the leading author screened all papers (including those used in earlier meta-analysis:
[8,9]) to assess extraction quality and to fix potential incorrect information.

From these 86 remaining studies (electronic supplementary material, table S6), we extracted the following information: (i) site coordinates;
(ii) crop type such as apple, tomato, maize, etc.; (iii) crop species; (iv) predator group; (iv) number of predator species used in the experiment;
(vi) treatment (i.e. exclusion or inclusion); (vii) means, standards deviations/errors and sample sizes both from treatment and control extracted
from text, tables, appendices and graphs; (viii) response variable (e.g. predation rate, abundance or density of pests and crop yield or biomass).
For studies that did not explicitly present the coordinates,we used the location thatwas provided (e.g. park, city, state) and searched coordinates
on the internet (for a similar decision, see [46]). We used predator group as the common name of the taxonomic group. For example, if the
predator was from the species Pardosa astrigera (Araneae), we classified them as spiders. We only kept predator groups that had more than
three studies (n > 3), and those with fewer than three studies were grouped into larger classifications (e.g. invertebrates and vertebrates).
If the study used only one species (e.g. removing all predators before starting the experiment and then add this specifically predator species
to the plot. See for example, [47,48]), we extracted the species name and classified it as a single predator, and if the study used two or more
species (see for example, [49,50]), we classified them as multiple predators. A more detailed description of the number of studies per predator
group, crop types and predator diversity (single species or multiple species) is provided in the electronic supplementary material (electronic
supplementary material, figure S2). Furthermore, if the study compared populations of pests and/or crop yield between a predator exclusion
treatment (predator absence) and a control (predator presence), we classified it as an exclusion experiment. If the study included predators
(predator presence) and compared them to a control (predator absence), we classified it as an inclusion experiment. We also used these
two types of experiments as moderators to see if they influenced the meta-analysis results. Because the effect sizes for both studies were com-
parable, we merged them in the statistical analysis (see below). Since we merged the extracted data from exclusion and inclusion experiments,
we reversed the measures (i.e. treatment and control) in the studies that included predators so that negative and positive effect sizes of both
experiment types indicated consistent effects of predator presence. Finally, data that were not presented in the text but were in the figures were
collected with the ‘Juicr’ package version 0.1 [51]. Furthermore, all the studies that met our criteria providedmeans, sample size andmeasures
of variance (in the text or figures), however, most studies reported the standard error, and to calculate the effect size, we transformed it into the
standard deviation.

We also extracted annual (i.e. using the experiment year of each study) bioclimatic variables (i.e. annual mean temperature, tempera-
ture annual range and precipitation seasonality) from Worldclim 2.0 [52] and Thornthwaite Aridity Index from Envirem [53] with 2.5 arc-
minutes (approx. 5 km) using each study’s coordinates. Moreover, because there are studies with different temporal scales (some lasted
days, some lasted a year), we collected data (i.e. mean, standard deviation and sample size) from the last measure made in the study, when
they did not report a general measure (see [21,54,55], for similar decisions).

We included in our meta-analysis 86 studies and 317 pairwise comparisons testing for the effect of resident predators on populations
of pests and/or yield in crop systems. We obtain 76 studies that tested the effect of resident predators on populations of pests in crop
systems. Specifically, 51 studies tested natural biological control and 25 tested conservation biological control. Furthermore, 54 studies
used exclusion treatments and compared pest suppression with non-exclusion treatment (control) and 22 used inclusion treatments
and compared pest suppression in treatments without predators (control). We also examined whether the impacts of predators varied
among bats, birds, bugs (i.e. Hemiptera), beetles, spiders and other invertebrates (i.e. Arthropoda predators that did not have three or
more studies or studies that mixed Arthropoda species). Overall, the studies included in our meta-analysis covered 32 countries and
28 different crop systems.

(b) Statistical analysis
All study analyses were performed in RStudio 4.3.2 [56] with the ‘Metafor’ package (v. 4.4-0) [57]. We calculated the effect size as the log trans-
formed ratio ofmeans (lnR) [58] using escalc function.Here, positive effect size values represent lowerpopulations of pests andhigher cropyield
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with the presenceof predators. To facilitate the interpretationof the results,weback-transformed the lnRvalues [(exp lnR−1)]×100, to obtain the
differences between treatment and control in percentages (see [59], for example).

To calculate the overall effect size of predator on populations of pests and crop yield we use a three-level meta-analysis model (with
restricted maximum-likelihood (REML) as a between-study heterogeneity estimator), with the rma.mv function. We choose this model
because our data contain studies with multiple effect sizes so we cannot consider these effects as independent measures. Therefore, we
included in all models (see below) two random effects: study identity and effect size identity. Furthermore, species are phylogenetically
related, so we included in the models crop species as random effects and phylogeny as a correlation matrix (based on [60]). We reported
these two different models because the statistical power of phylogenetic analysis is limited when there are many effect sizes coming from
the same study species [61].

To explore the effects of predators on populations of pests and crop yieldwe performed an analysiswith categoricalmoderators (i.e. pred-
ator group and crop type) and to calculate the effect of predator diversity on populations of pests, we use multiple and single predators as
categorical moderators also using a three-level meta-analysis model (with REML). Furthermore, to calculate whether climate moderates the
overall effects of predators in populations of pests and crop yield and the predator diversity effect on populations of pests, we performed a
meta-regression with effect size measures (lnR) as the response variable and the climate variables as predictor variables. We only maintain in
the model climatic variables that were not strongly correlated (less than 0.8, see electronic supplementary material, figure S7). We also
standardized the climatic variables (scale to zero mean and unit variance) before fitting the models. The values of AICc (Akaike’s
selection criterion) were used to compare complex models (with all predictor variables) and simple models (removing predictors) with
the anova.rma function.

We also used the anova function to perform a test of moderators (Wald-type test (Qm)) to contrast the effects of single-species and
multiple-species predators on populations of pests. And we used the var.comp function (‘dmetar’ package, [62]) to calculate the I² statistic
to access the amount of variation not attributable to sampling error (i.e. the percentage of heterogeneity between studies). As we perform a
three-level meta-analysis model, we can calculate the total I² and this heterogeneity variance to true effect size difference within studies
(i.e. clustering pairwise comparisons of the same study) and between studies.

(c) Sensitivity analysis
To assess publication bias in our results, we first visually inspected the relationship of effect size to study standard deviation using contour-
enhanced funnel plots [63].We also tested for possible publication bias performing twouni-moderatormultilevelmeta-regression: one includ-
ing the square root of the inverse of effective sample size as themoderator and the other including theyear of publication (mean-centred) as the
moderator [60]. We also performed a multiple moderator publication bias test, which can model both heterogeneity and non-independence,
including square root of the inverse of effective sample size, year of publication, and study treatment asmoderators [60]. Thesemethods could
provide information about the existence of small-study effect (i.e. effect sizes based on small sample sizes tend to be larger) after accounting for
non-independence between effect sizes and indicates if positive results are published earlier than negative results [60].

Finally, we also used the Rosenthal fail-safe number to test how many unpublished studies with non-significant results had to be
added to the analysis to change the observed significant overall effect sizes to non-significant [64]. Whether the number of observations
included in the study is greater than 5n + 10 the results are considered robust against publication bias [64]. Since we had no major changes
in our results, we present the results of the sensitivity analysis in the electronic supplementary material (see electronic supplementary
material, text S2 and S2 and figures S3 to S6).
3. Results
(a) Descriptive overview
Specifically, we included 76 studies and 270 pairwise comparisons testing for the effect of resident predators on populations of pests in
crop systems. Furthermore, we included 19 studies and 47 pairwise comparisons that investigated the effects of predators biological
control on crop yield (figure 1, electronic supplementary material, figure S1).

(b) Predators increase both pest control and crop yield
Both natural and conservation biological control reduced pest populations (natural: lnR = 0.57, confidence interval (CI) = 0.42 to 0.72;
conservation: lnR = 0.5, CI = 0.29 to 0.72, electronic supplementary material, table S1), and since these two types of biological control
are provided by resident predators and their effect sizes were similar (Qm1 = 0.25, p = 0.61, electronic supplementary material, table
S2), we investigated the effect of resident predators bymerging natural and conservation biological control studies. Across all studies,
predators reduced pest populations by 73% (i.e. comparing cropswith andwithout predators; lnR = 0.55, CI = 0.43 to 0.67;Qt= 1532.4,
d.f. = 269, p < 0.0001, I² = 91.9%, figure 2). Beetles, birds, spiders and other invertebrate predators were all effective biocontrol agents
(figure 2, electronic supplementary material, table S1). We failed to detect an impact of bats and hemipterans on pest populations,
perhaps due to low number of pairwise comparisons (k = 4 and k = 10, respectively), as their effect sizes were similar to several of
the other predator groups (figure 2, electronic supplementary material, table S1). The presence of predators reduced populations
of pests among the different crop types (figure 2, electronic supplementary material, table S1). Specifically, they reduced pests by
51% in cereal crops (lnR = 0.41, CI = 0.18 to 0.64, p < 0.001), by 103% in fruit tree crops (lnR = 0.71, CI = 0.45 to 0.96, p < 0.0001), and
in oils and protein crops (lnR = 0.7, CI = 0.31 to 1.1, p < 0.001), by 62% in vegetable crops (lnR = 0.48, CI = 0.21 to 0.75, p < 0.001),
and by 73% in other crops (lnR = 0.55, CI = 0.30 to 0.8, p < 0.0001). Furthermore, in models that account for phylogenetic non-indepen-
dence the impacts of predators on pest populations were similar (i.e. not changing magnitude and significance of effect sizes.
See electronic supplementary material, table S1).

The presence of predators on crops increased crop yield by 25% (lnR = 0.22, CI = 0.09 to 0.35; Qt= 195.1, d.f. = 46, p < 0.0001, I² =
95.6%, figure 3, electronic supplementary material, table S3), indicating a positive overall top-down cascading effect. When we
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that did not ‘cross’ the dashed line (the zero on the x-axis). Silhouettes are from http://phylopic.org/ and are licensed under a Creative Commons licence.

bats
beetles
birds
bugs
other invertebrates
other vertebrates
spiders
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evaluated the overall effect of predator presence on crop yield among the different predator groups, we found that beetles (lnR = 0.22,
CI = 0.01 to 0.44, p = 0.03), birds (lnR = 0.21, CI = 0.00 to 0.42, p = 0.04), and other invertebrates (lnR = 0.31, CI = 0.10 to 0.52, p = 0.002)
increased crop yield. The increase in crop yield in the presence of predators was consistent among vegetable (lnR = 0.23, CI = 0.03 to
0.43, p = 0.02) and other crops (i.e. coffee, cocoa and apple, lnR = 0.28, CI = 0.03 to 0.52, p = 0.02). There was no significant effect of
predators on cereal yields (although the effect was positive), which may reflect the low number of studies (n = 4) and pairwise com-
parisons (k = 13). However, when we consider phylogenetic non-independence, we failed to detect an impact of predators on crop
yield (electronic supplementary material, table S3). Specifically, the effect sizes showed a similar magnitude but became non-signifi-
cant for overall effect (lnR = 0.23, CI =− 0.14 to 0.61; Qt = 195.05, d.f. = 46, p = 0.22), beetles (lnR = 0.24, CI =− 0.17 to 0.65, p = 0.25),
birds (lnR = 0.34, CI =− 0.07 to 0.76, p = 0.10), other invertebrates (lnR = 0.22, CI =− 0.18 to 0.64, p = 0.27), vegetables (lnR = 0.27,
CI =− 0.20 to 0.75, p = 0.26) and other crops (lnR = 0.2, CI =− 0.37 to 0.78, p = 0.48), and remained similar to spiders (lnR = 0.26,
CI =− 0.14 to 0.67, p = 0.20), other vertebrates (lnR = 0.06, CI =− 0.2 to 0.75, p = 0.83) and cereals (lnR = 0.2, CI =− 0.36 to 0.77, p = 0.48).

http://phylopic.org/
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(c) Crops with single and multiple predators had similar pest control
The impacts of multiple predator species on pest populations were similar to the impacts of single predator species when com-
pared to treatments without predators. We found that single-species predator treatments reduced pest populations by 60%
(lnR = 0.47, CI = 0.2 to 0.73, p < 0.001, figure 4, electronic supplementary material, table S4). Likewise, populations of pests
decreased by 69% (lnR = 0.52, CI = 0.36 to 0.68, p < 0.0001) in multiple-species predator treatments compared to predator-exclusion
treatments. These impacts were statistically indistinguishable (Qm1 = 0.12, p = 0.72, electronic supplementary material, table S2)
suggesting that in crops, multiple-species predators did not perform higher biological control than single-species predator. This
was true, regardless of whether the predators were birds, beetles or spiders (figure 4, electronic supplementary material, tables
S2 and S4). Furthermore, in models that account for phylogenetic non-independence the impacts of predator diversity on pest
populations were similar (i.e. not changing magnitude and significance of effect sizes. See electronic supplementary material,
table S4).

(d) Precipitation seasonality increases pest control performed by predators
To investigate whether climatic factors alter the impacts of biological control, we performed meta-regressions using mean annual
temperature, temperature annual range, annual precipitation and aridity (table 1) as continuous moderators and the effect sizes as
response variables. We found that precipitation seasonality (the only climatic variable included after model selection) had a posi-
tive relationship with predator effects on populations of pests (slope: 0.16, p = 0.0064; figure 5), indicating that predators reduce
populations of pests more strongly in sites with higher precipitation seasonality. When we included phylogeny, the results
were similar (slope: 0.16, p = 0.0073). Furthermore, when we tested if climatic factors alter the effect of single-species and mul-
tiple-species predators on populations of pests, none of climatic factors were correlated to the effect sizes. Similarly, climatic
factors did not affect predators’ effect on crop yield (electronic supplementary material, table S5).
4. Discussion
Predators in crop systems reduced populations of pests and increased crop yields in a way that was consistent among predator
groups and crop types. Surprisingly, the impact of a single predator species was equivalent to the impacts of multiple predator
species on pest populations, and the only climatic factor that mediated the impacts of predators was precipitation seasonality.
Crops in more seasonal regions had lower populations of pests due to biological control performed by predators. Taken together,
this evidence indicates that predators are effective resident agents of biological control across crop types, and any predicted
changes in climate (i.e. increased precipitation seasonality) will likely enhance their impacts on crop pests.
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Predators increased crop yield and reduced pest populations. This finding is consistent with previous studies indicating that pre-
dators can reduce insect and pest abundance and benefit crops [8,9,18,43]. Our study reinforces the role of predators on suppression of
terrestrial herbivore populations [65,66] and demonstrates the importance of predators as a biological control agent in a variety of crop
systems. This result also highlights that predators could reduce pest populations and increasing yield even in crop systems,which tend
to be simpler environments than natural or semi-natural habitats and could lead to more strong species interactions ([67], but see for
example enemies’ hypothesis: [68,69]). Although the influence of landscape context on biological control is outside the scope of our
study, other possible explanations might be that landscape complexity at different scales is also important for biological control, and
pest control in crops inserted in complex landscapes may benefit from additional resources [70,71]. Furthermore, to the best of our
knowledge, our study is the first to suggest positive indirect effects of predators on crop yield across predator groups and crop
types. Taken together, these results suggest a broad effectiveness of resident predators as biological control agents. However, we rea-
lize that publication bias likely occurs, such that only those studies that show success of biological control agents are likely to be
published [72]. Furthermore, we suggest that the results on the effect of predators on crop yield should be interpreted with caution,
sincewe failed to find an impact of predators on yieldwhen phylogenywas considered. It is important to note that the phylogenywas
conductedwith a limited number of species (i.e. 13 species), and a few species accounted formany effect sizemeasures. Therefore, this
meta-analysis also indicates that there are fewmanipulative-field studies assessing the impact of natural predators on crop yield.More
manipulative-field studies in different crop species are necessary to obtain more accurate results.

Biological control performed by multiple predator species was no more effective than that performed by single predator species,
regardless of the predator group (i.e. beetles, birds and spiders). This result differs from previous work showing that multiple species
of natural enemies (i.e. predator, parasitoid, pathogen) were more effective at reducing pest abundance than single species of natural
enemies [18]. However, our study compared only predators, and the variability of predator traits (e.g. body size, hunting mode and
dietary specialization)may be lower than the natural enemies’ groups tested in previouswork [18]. Thismayexplainwhywe foundno
difference in biological control between crops with one predator and those with multiple predator species. Despite being beyond the
scope of this study, functional traits of predators and prey may be determining factors for the relationship between predator diversity
and biological control [15,22,40]. In addition, intraguild predation in multiple predator treatments could favour prey release and alle-
viate the negative effects of predation on pest populations [10,73]. On the other hand, our study highlights that overall, a single species
of resident predator can provide pest control at least as strongly as multiple species.

Predator effects on pests were higher in regions with more precipitation seasonality. Similarly, a previous meta-analysis also
showed that predator-mediated biological control on aphids increased with increasing precipitation seasonality [74]. The positive
effect of precipitation seasonality on biological control can be explained by how predators and prey respond to precipitation season-
ality in terms of their physiology and behaviour. For example, lower water availability can increase plant consumption by herbivores
and predator and prey interactions in order to maintain their water balance [42,75,76]. Consequently, this process could favour bio-
logical control. However, if this drought condition persists, pest populations may decrease, due to high predation pressure and low
plant nutrient availability and could therefore result in a decline in predator populations [42]. On the other hand, greater water avail-
ability could favour biological control via bottom-up effects [42]. Taken together, precipitation seasonality can favour pest control by
favouring predation pressure in conditions of low water availability and by preventing predator populations from declining as water
availability increases.

Our meta-analysis also highlights key gaps in studies on biological control by predators. Few studies have been conducted in crop
systems in the Global South, neglecting the importance of predators as natural enemies of pests and the factors that affect biological
control in countries with high biodiversity and food production [77]. Some predator groups, such as bats, are still poorly studied in
experiments tomeasure the effect of bat diversityonbiological control, although their importance as consumers of pests iswidely recog-
nized [78,79]. Finally, some of our results should be interpretedwith caution because of the lownumber of studies and large variation in
effect size (e.g. effect of vertebrates group on crop yield).

Here, we demonstrate top-down effects of resident predators on populations of pests, which cascade down to enhance crop yield.
Furthermore, we show that a single species of resident predator can provide pest control at least as strongly asmultiple species. This is
important as it highlights how beneficial it is to conserve natural predator species in crop systems. More importantly, our results con-
firm that resident predators can act as a buffer against climate change [80,81], providing biological control services in crop systems.
This is because global climate projections predict that precipitation will become more variable in some regions, with changes in the
frequency and intensity of precipitation [36,82]. We therefore argue that future studies should incorporate climate-mediated cascade
effects of top-downpest control to better understand the ecological processes thatmaintain this key ecosystem service. This can help to
develop optimal strategies for biological control management to mitigate the effects of climate change on agricultural systems and
food production [83–85]. Our meta-analysis suggests that, even in regions with high precipitation seasonality and regardless of the
natural occurrence of one or several species, predators are broadly effective at controlling pests and increasing yield in a variety of
crop systems. While implementing biological control at scales necessary to increase crop production to minimize global hunger is
a daunting challenge, our results indicate that carefully deploying biological control should be carefully considered.
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